Do you want to publish a course? Click here

Compact radio emission indicates a structured jet was produced by a binary neutron star merger

128   0   0.0 ( 0 )
 Added by Giancarlo Ghirlanda
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The binary neutron star merger event GW170817 was detected through both electromagnetic radiation and gravitational waves. Its afterglow emission may have been produced by either a narrow relativistic jet or an isotropic outflow. High spatial resolution measurements of the source size and displacement can discriminate between these scenarios. We present Very Long Baseline Interferometry observations, performed 207.4 days after the merger, using a global network of 32 radio telescopes. The apparent source size is constrained to be smaller than 2.5 milliarcseconds at the 90% confidence level. This excludes the isotropic outflow scenario, which would have produced a larger apparent size, indicating that GW170817 produced a structured relativistic jet. Our rate calculations show that at least 10% of neutron star mergers produce such a jet.

rate research

Read More

We investigate the possibility that GW170817 has not been the merger of two conventional neutron stars (NS) but involved at least one if not two hybrid stars with a quark matter core which might even belong to a third family of compact stars. To this end, we develop a Bayesian analysis method for selecting the most probable equation of state (EoS) under a set of constraints from compact star physics, which now also include the tidal deformability from GW170817 and the first result for the mass and radius determination for PSR J0030+0451 by NICER. We apply this method for the first time to a two-parameter family of hybrid EoS based on the DD2 model with nucleonic excluded volume for hadronic matter and the color superconducting generalized nlNJL model for quark matter. The model has a variable onset of deconfinement and can mimic the effects of pasta phases with the possibility of a third family of hybrid stars in the mass-radius ($M-R$) diagram. The main findings of this study are that: 1) the presence of multiple configurations for a given mass (twins) corresponds to a set of disconnected lines in the diagram of tidal deformabilities for binary mergers, so that merger events from the same mass range may result in a probability landscape with different peak positions; 2) the Bayesian analysis with the above observational constraints favors an early onset of the deconfinement transition, at masses of $M_{rm onset}le 0.8~M_odot$ with a $M-R$ relationship that in the range of observed neutron star masses is almost indistinguishable from that of a soft hadronic APR EoS; 3) a few yet fictitious measurements of the NICER experiment with a $1sigma$ range that is half of the present value and different mass and radius would change the posterior likelihood so that hybrid EoS with a phase transition onset in the range $M_{rm onset} = 1.1 - 1.6~M_odot $ would be favored.
152 - E. Troja , H. van Eerten , G. Ryan 2018
We present the results of our year-long afterglow monitoring of GW170817, the first binary neutron star (NS) merger detected by advanced LIGO and advanced Virgo. New observations with the Australian Telescope Compact Array (ATCA) and the Chandra X-ray Telescope were used to constrain its late-time behavior. The broadband emission, from radio to X-rays, is well-described by a simple power-law spectrum with index ~0.585 at all epochs. After an initial shallow rise ~t^0.9, the afterglow displayed a smooth turn-over, reaching a peak X-ray luminosity of ~5e39 erg/s at 160 d, and has now entered a phase of rapid decline ~t^(-2). The latest temporal trend challenges most models of choked jet/cocoon systems, and is instead consistent with the emergence of a relativistic structured jet seen at an angle of ~22 deg from its axis. Within such model, the properties of the explosion (such as its blastwave energy E_K~2E50 erg, jet width theta_c~4 deg, and ambient density n~3E-3 cm^(-3)) fit well within the range of properties of cosmological short GRBs.
Gravitational waves have been detected from a binary neutron star merger event, GW170817. The detection of electromagnetic radiation from the same source has shown that the merger occurred in the outskirts of the galaxy NGC 4993, at a distance of 40 megaparsecs from Earth. We report the detection of a counterpart radio source that appears 16 days after the event, allowing us to diagnose the energetics and environment of the merger. The observed radio emission can be explained by either a collimated ultra-relativistic jet viewed off-axis, or a cocoon of mildly relativistic ejecta. Within 100 days of the merger, the radio light curves will distinguish between these models and very long baseline interferometry will have the capability to directly measure the angular velocity and geometry of the debris.
Detection of the electromagnetic emission from coalescing binary neutron stars (BNS) is important for understanding the merger and afterglow. We present a search for a radio counterpart to the gravitational-wave source GW190425, a BNS merger, using Apertif on the Westerbork Synthesis Radio Telescope (WSRT). We observe a field of high probability in the associated localisation region for 3 epochs at 68, 90 and 109 days post merger. We identify all sources that exhibit flux variations consistent with the expected afterglow emission of GW190425. We also look for possible transients. These are sources which are only present in one epoch. In addition, we quantify our ability to search for radio afterglows in fourth and future observing runs of the gravitational-wave detector network using Monte Carlo simulations. We found 25 afterglow candidates based on their variability. None of these could be associated with a possible host galaxy at the luminosity distance of GW190425. We also found 55 transient afterglow candidates that were only detected in one epoch. All turned out to be image artefacts. In the fourth observing run, we predict that up to three afterglows will be detectable by Apertif. While we did not find a source related to the afterglow emission of GW190425, the search validates our methods for future searches of radio afterglows.
GRB 060505 was the first well-known nearby (at redshift 0.089) hybrid gamma-ray burst that has a duration longer than 2 seconds but without the association of a supernova down to very stringent limits. The prompt $gamma-$ray flash lasting $sim 4$ sec could consist of an intrinsic short burst and its tail emission, but the sizable temporal lag ($sim 0.35$ sec) as well as the environment properties led to the widely-accepted classification of a long duration gamma-ray burst originated from the collapse of a massive star. Here for the $ first$ time we report the convincing evidence for a thermal-like optical radiation component in the spectral energy distribution of the early afterglow emission. In comparison to AT2017gfo, the thermal radiation is $sim 2$ times brighter and the temperature is comparable at similar epochs. The optical decline is much quicker than that in X-rays, which is also at odds with the fireball afterglow model but quite natural for the presence of a blue kilonova. Our finding reveals a neutron star merger origin of the hybrid GRB 060505 and strongly supports the theoretical speculation that some binary neutron stars can merge ultra-quickly (within $sim 1$ Myr) after their formation when the surrounding region is still highly star-forming and the metallicity remains low. Gravitational wave and electromagnetic jointed observations are expected to confirm such scenarios in the near future.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا