Do you want to publish a course? Click here

Microlensed Radio Emission from Exoplanets

132   0   0.0 ( 0 )
 Added by Yuta Shiohira
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we investigate the detectability of radio emission from exoplanets, especially hot Jupiters, which are magnified by gravitational microlensing. Because hot Jupiters have orbital periods much shorter than the characteristic timescale of microlensing, the magnification curve has a unique wavy feature depending on the orbital parameters. This feature is useful to identify radio emission from exoplanets and, in addition to magnification, makes it easier to detect exoplanets directly. We also estimate the expected event rate red of the detectable level of microlensed planetary radio emissions, assuming the LOFAR and the first phase of the Square Kilometre Array.



rate research

Read More

Like the magnetised planets in our Solar System, magnetised exoplanets should emit strongly at radio wavelengths. Radio emission directly traces the planetary magnetic fields and radio detections can place constraints on the physical parameters of these features. Large comparative studies of predicted radio emission characteristics for the known population of exoplanets help to identify what physical parameters could be key for producing bright, observable radio emission. Since the last comparative study, many thousands of exoplanets have been discovered. We report new estimates for the radio flux densities and maximum emission frequencies for the current population of known exoplanets orbiting pre-main sequence and main-sequence stars with spectral types F-M. The set of exoplanets predicted to produce observable radio emission are Hot Jupiters orbiting young stars. The youth of these system predicts strong stellar magnetic fields and/or dense winds, which are key for producing bright, observable radio emission. We use a new all-sky circular polarisation Murchison Widefield Array survey to place sensitive limits on 200 MHz emission from exoplanets, with $3sigma$ values ranging from 4.0 - 45.0 mJy. Using a targeted Giant Metre Wave Radio Telescope observing campaign, we also report a $3sigma$ upper limit of 4.5 mJy on the radio emission from V830 Tau b, the first Hot Jupiter to be discovered orbiting a pre-main sequence star. Our limit is the first to be reported for the low-frequency radio emission from this source.
The majority of searches for radio emission from exoplanets have to date focused on short period planets, i.e., the so-called hot Jupiter type planets. However, these planets are likely to be tidally locked to their host stars and may not generate sufficiently strong magnetic fields to emit electron cyclotron maser emission at the low frequencies used in observations (typically >150 MHz). In comparison, the large mass-loss rates of evolved stars could enable exoplanets at larger orbital distances to emit detectable radio emission. Here, we first show that the large ionized mass-loss rates of certain evolved stars relative to the solar value could make them detectable with the Low Frequency Array (LOFAR) at 150 MHz ($lambda$ = 2 m), provided they have surface magnetic field strengths >50 G. We then report radio observations of three long period (>1 au) planets that orbit the evolved stars $beta$ Gem, $iota$ Dra, and $beta$ UMi using LOFAR at 150 MHz. We do not detect radio emission from any system but place tight 3$sigma$ upper limits of 0.98, 0.87, and 0.57 mJy on the flux density at 150 MHz for $beta$ Gem, $iota$ Dra, and $beta$ UMi, respectively. Despite our non-detections these stringent upper limits highlight the potential of LOFAR as a tool to search for exoplanetary radio emission at meter wavelengths.
We present the results of a survey for low frequency radio emission from 17 known exoplanetary systems with the Murchison Widefield Array. This sample includes 13 systems that have not previously been targeted with radio observations. We detected no radio emission at 154 MHz, and put 3 sigma upper limits in the range 15.2-112.5 mJy on this emission. We also searched for circularly polarised emission and made no detections, obtaining 3 sigma upper limits in the range 3.4-49.9 mJy. These are comparable with the best low frequency radio limits in the existing literature and translate to luminosity limits of between 1.2 x 10^14 W and 1.4 x 10^17 W if the emission is assumed to be 100% circularly polarised. These are the first results from a larger program to systematically search for exoplanetary emission with the MWA.
86 - Jan Budaj , Petr Kabath , 2020
Thousands of transiting exoplanets have been discovered to date, thanks in great part to the {em Kepler} space mission. As in all populations, and certainly in the case of exoplanets, one finds unique objects with distinct characteristics. Here we will describe the properties and behaviour of a small group of `disintegrating exoplanets discovered over the last few years (KIC 12557548b, K2-22b, and others). They evaporate, lose mass unraveling their naked cores, produce spectacular dusty comet-like tails, and feature highly variable asymmetric transits. Apart from these exoplanets, there is observational evidence for even smaller `exo-objects orbiting other stars: exoasteroids and exocomets. Most probably, such objects are also behind the mystery of Boyajians star. Ongoing and upcoming space missions such as {em TESS} and PLATO will hopefully discover more objects of this kind, and a new era of the exploration of small extrasolar systems bodies will be upon us.
We present the findings from the Prototype All-Sky Imager (PASI), a backend correlator of the first station of the Long Wavelength Array (LWA1), which has recorded over 11,000 hours of all-sky images at frequencies between 25 and 75 MHz. In a search of this data for radio transients, we have found 49 long (10s of seconds) duration transients. Ten of these transients correlate both spatially and temporally with large meteors (fireballs), and their signatures suggest that fireballs emit a previously undiscovered low frequency, non-thermal pulse. This emission provides a new probe into the physics of meteors and identifies a new form of naturally occurring radio transient foreground.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا