No Arabic abstract
This paper is devoted to the classification of 4-dimensional Riemannian spin manifolds carrying skew Killing spinors. A skew Killing spinor $psi$ is a spinor that satisfies the equation $ abla$X$psi$ = AX $times$ $psi$ with a skew-symmetric endomorphism A. We consider the degenerate case, where the rank of A is at most two everywhere and the non-degenerate case, where the rank of A is four everywhere. We prove that in the degenerate case the manifold is locally isometric to the Riemannian product R x N with N having a skew Killing spinor and we explain under which conditions on the spinor the special case of a local isometry to S 2 x R 2 occurs. In the non-degenerate case, the existence of skew Killing spinors is related to doubly warped products whose defining data we will describe.
We describe and to some extent characterize a new family of Kahler spin manifolds admitting non-trivial imaginary Kahlerian Killing spinors.
We introduce a notion of Ricci flow in generalized geometry, extending a previous definition by Gualtieri on exact Courant algebroids. Special stationary points of the flow are given by solutions to first-order differential equations, the Killing spinor equations, which encompass special holonomy metrics with solutions of the Hull-Strominger system. Our main result investigates a method to produce new solutions of the Ricci flow and the Killing spinor equations. For this, we consider T-duality between possibly topologically distinct torus bundles endowed with Courant structures, and demonstrate that solutions of the equations are exchanged under this symmetry. As applications, we give a mathematical explanation of the dilaton shift in string theory and prove that the Hull-Strominger system is preserved by T-duality.
In a previous article we proved a lower bound for the spectrum of the Dirac operator on quaternionic Kaehler manifolds. In the present article we study the limiting case, i. e. manifolds where the lower bound is attained as an eigenvalue. We give an equivalent formulation in terms of a quaternionic Killing equation and show that the only symmetric quaternionic Kaehler manifolds with smallest possible eigenvalue are the quaternionic projective spaces.
We investigate instantons on manifolds with Killing spinors and their cones. Examples of manifolds with Killing spinors include nearly Kaehler 6-manifolds, nearly parallel G_2-manifolds in dimension 7, Sasaki-Einstein manifolds, and 3-Sasakian manifolds. We construct a connection on the tangent bundle over these manifolds which solves the instanton equation, and also show that the instanton equation implies the Yang-Mills equation, despite the presence of torsion. We then construct instantons on the cones over these manifolds, and lift them to solutions of heterotic supergravity. Amongst our solutions are new instantons on even-dimensional Euclidean spaces, as well as the well-known BPST, quaternionic and octonionic instantons.
A supermanifold M is canonically associated to any pseudo Riemannian spin manifold (M_0,g_0). Extending the metric g_0 to a field g of bilinear forms g(p) on T_p M, pin M_0, the pseudo Riemannian supergeometry of (M,g) is formulated as G-structure on M, where G is a supergroup with even part G_0cong Spin(k,l); (k,l) the signature of (M_0,g_0). Killing vector fields on (M,g) are, by definition, infinitesimal automorphisms of this G-structure. For every spinor field s there exists a corresponding odd vector field X_s on M. Our main result is that X_s is a Killing vector field on (M,g) if and only if s is a twistor spinor. In particular, any Killing spinor s defines a Killing vector field X_s.