Do you want to publish a course? Click here

Thermodynamic behavior of modified integer-spin Kitaev models on the honeycomb lattice

125   0   0.0 ( 0 )
 Added by Owen Bradley
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the thermodynamic properties of modified spin-$S$ Kitaev models introduced by Baskaran, Sen and Shankar (Phys. Rev. B 78, 115116 (2008)). These models have the property that for half-odd-integer spins their eigenstates map on to those of spin-1/2 Kitaev models, with well-known highly entangled quantum spin-liquid states and Majorana fermions. For integer spins, the Hamiltonian is made out of commuting local operators. Thus, the eigenstates can be chosen to be completely unentangled between different sites, though with a significant degeneracy for each eigenstate. For half-odd-integer spins, the thermodynamic properties can be related to the spin-1/2 Kitaev models apart from an additional degeneracy. Hence we focus here on the case of integer spins. We use transfer matrix methods, high temperature expansions and Monte Carlo simulations to study the thermodynamic properties of ferromagnetic and antiferromagnetic models with spin $S=1$ and $S=2$. Apart from large residual entropies, which all the models have, we find that they can have a variety of different behaviors. Transfer matrix calculations show that for the different models, the correlation lengths can be finite as $Tto 0$, become critical as $Tto 0$ or diverge exponentially as $Tto 0$. There is a conserved $Z_2$ flux variable associated with each hexagonal plaquette which saturates at the value $+1$ as $Trightarrow0$ in all models except the $S=1$ antiferromagnet where the mean flux remains zero as $Tto 0$. We provide qualitative explanations for these results.



rate research

Read More

Recent interest in honeycomb lattice materials has focused on their potential to host quantum spin liquid (QSL) states. Variations in bond angles and spin allow a range of interesting behaviors on this lattice, from the predicted QSL ground state of the Kitaev model to exotic magnetic orders. Here we report the physical properties of two compounds with rare earths on an approximate honeycomb lattice. The isostructural compounds Nd$_2$S$_5$Sn (J = $frac{9}{2}$) and Pr$_2$S$_5$Sn (J = 4) permit a direct comparison of half-integer versus integer spins on this lattice. We find strikingly different magnetic properties for the two compounds. Nd$_2$S$_5$Sn orders antiferromagnetically at T$_N$ $approx$ 2.5 K, and undergoes several magnetic transitions to other ordered states under applied field. Pr$_2$S$_5$Sn displays no magnetic ordering transition above T = 0.41 K, and may be proximate to a spin liquid state.
We study the effects of doping the Kitaev model on the honeycomb lattice where the spins interact via the bond-directional interaction $J_K$, which is known to have a quantum spin liquid as its exact ground state. The effect of hole doping is studied within the $t$-$J_K$ model on a three-leg cylinder using density-matrix renormalization group. Upon light doping, we find that the ground state of the system has quasi-long-range charge-density-wave correlations but short-range single-particle correlations. The dominant pairing channel is the even-parity superconducting pair-pair correlations with $d$-wave-like symmetry, which oscillate in sign as a function of separation with a period equal to that of the spin-density wave and two times the charge-density wave. Although these correlations fall rapidly (possibly exponentially) at long distances, this is never-the-less the first example where a pair-density wave is the strongest SC order on a bipartite lattice. Our results may be relevant to ${rm Na_2IrO_3}$ and $alpha$-${rm RuCl_3}$ upon doping.
We consider the quasi-two-dimensional pseudo-spin-1/2 Kitaev - Heisenberg model proposed for A2IrO3 (A=Li, Na) compounds. The spin-wave excitation spectrum, the sublattice magnetization, and the transition temperatures are calculated in the random phase approximation (RPA) for four different ordered phases, observed in the parameter space of the model: antiferomagnetic, stripe, ferromagnetic, and zigzag phases. The N{e}el temperature and temperature dependence of the sublattice magnetization are compared with the experimental data on Na2IrO3.
It is widely accepted that topological superconductors can only have an effective interpretation in terms of curved geometry rather than gauge fields due to their charge neutrality. This approach is commonly employed in order to investigate their properties, such as the behaviour of their energy currents. Nevertheless, it is not known how accurately curved geometry can describe actual microscopic models. Here, we demonstrate that the low-energy properties of the Kitaev honeycomb lattice model, a topological superconductor that supports localised Majorana zero modes at its vortex excitations, are faithfully described in terms of Riemann-Cartan geometry. In particular, we show analytically that the continuum limit of the model is given in terms of the Majorana version of the Dirac Hamiltonian coupled to both curvature and torsion. We numerically establish the accuracy of the geometric description for a wide variety of couplings of the microscopic model. Our work opens up the opportunity to accurately predict dynamical properties of the Kitaev model from its effective geometric description.
In addition to low-energy spin fluctuations, which distinguish them from band insulators, Mott insulators often possess orbital degrees of freedom when crystal-field levels are partially filled. While in most situations spins and orbitals develop long-range order, the possibility for the ground state to be a quantum liquid opens new perspectives. In this paper, we provide clear evidence that the SU(4) symmetric Kugel-Khomskii model on the honeycomb lattice is a quantum spin-orbital liquid. The absence of any form of symmetry breaking - lattice or SU(N) - is supported by a combination of semiclassical and numerical approaches: flavor-wave theory, tensor network algorithm, and exact diagonalizations. In addition, all properties revealed by these methods are very accurately accounted for by a projected variational wave-function based on the pi-flux state of fermions on the honeycomb lattice at 1/4-filling. In that state, correlations are algebraic because of the presence of a Dirac point at the Fermi level, suggesting that the symmetric Kugel-Khomskii model on the honeycomb lattice is an algebraic quantum spin-orbital liquid. This model provides a good starting point to understand the recently discovered spin-orbital liquid behavior of Ba_3CuSb_2O_9. The present results also suggest to choose optical lattices with honeycomb geometry in the search for quantum liquids in ultra-cold four-color fermionic atoms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا