Do you want to publish a course? Click here

Let Me Choose: From Verbal Context to Font Selection

134   0   0.0 ( 0 )
 Added by Amirreza Shirani
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper, we aim to learn associations between visual attributes of fonts and the verbal context of the texts they are typically applied to. Compared to related work leveraging the surrounding visual context, we choose to focus only on the input text as this can enable new applications for which the text is the only visual element in the document. We introduce a new dataset, containing examples of different topics in social media posts and ads, labeled through crowd-sourcing. Due to the subjective nature of the task, multiple fonts might be perceived as acceptable for an input text, which makes this problem challenging. To this end, we investigate different end-to-end models to learn label distributions on crowd-sourced data and capture inter-subjectivity across all annotations.

rate research

Read More

When fonts are used on documents, they are intentionally selected by designers. For example, when designing a book cover, the typography of the text is an important factor in the overall feel of the book. In addition, it needs to be an appropriate font for the rest of the book cover. Thus, we propose a method of generating a book title image based on its context within a book cover. We propose an end-to-end neural network that inputs the book cover, a target location mask, and a desired book title and outputs stylized text suitable for the cover. The proposed network uses a combination of a multi-input encoder-decoder, a text skeleton prediction network, a perception network, and an adversarial discriminator. We demonstrate that the proposed method can effectively produce desirable and appropriate book cover text through quantitative and qualitative results.
We present a method to edit a target portrait footage by taking a sequence of audio as input to synthesize a photo-realistic video. This method is unique because it is highly dynamic. It does not assume a person-specific rendering network yet capable of translating arbitrary source audio into arbitrary video output. Instead of learning a highly heterogeneous and nonlinear mapping from audio to the video directly, we first factorize each target video frame into orthogonal parameter spaces, i.e., expression, geometry, and pose, via monocular 3D face reconstruction. Next, a recurrent network is introduced to translate source audio into expression parameters that are primarily related to the audio content. The audio-translated expression parameters are then used to synthesize a photo-realistic human subject in each video frame, with the movement of the mouth regions precisely mapped to the source audio. The geometry and pose parameters of the target human portrait are retained, therefore preserving the context of the original video footage. Finally, we introduce a novel video rendering network and a dynamic programming method to construct a temporally coherent and photo-realistic video. Extensive experiments demonstrate the superiority of our method over existing approaches. Our method is end-to-end learnable and robust to voice variations in the source audio.
122 - Suyoun Kim , Florian Metze 2019
Conversational context information, higher-level knowledge that spans across sentences, can help to recognize a long conversation. However, existing speech recognition models are typically built at a sentence level, and thus it may not capture important conversational context information. The recent progress in end-to-end speech recognition enables integrating context with other available information (e.g., acoustic, linguistic resources) and directly recognizing words from speech. In this work, we present a direct acoustic-to-word, end-to-end speech recognition model capable of utilizing the conversational context to better process long conversations. We evaluate our proposed approach on the Switchboard conversational speech corpus and show that our system outperforms a standard end-to-end speech recognition system.
Metaphorical expressions are difficult linguistic phenomena, challenging diverse Natural Language Processing tasks. Previous works showed that paraphrasing a metaphor as its literal counterpart can help machines better process metaphors on downstream tasks. In this paper, we interpret metaphors with BERT and WordNet hypernyms and synonyms in an unsupervised manner, showing that our method significantly outperforms the state-of-the-art baseline. We also demonstrate that our method can help a machine translation system improve its accuracy in translating English metaphors to 8 target languages.
Breimans classic paper casts data analysis as a choice between two cultures: data modelers and algorithmic modelers. Stated broadly, data modelers use simple, interpretable models with well-understood theoretical properties to analyze data. Algorithmic modelers prioritize predictive accuracy and use more flexible function approximations to analyze data. This dichotomy overlooks a third set of models $-$ mechanistic models derived from scientific theories (e.g., ODE/SDE simulators). Mechanistic models encode application-specific scientific knowledge about the data. And while these categories represent extreme points in model space, modern computational and algorithmic tools enable us to interpolate between these points, producing flexible, interpretable, and scientifically-informed hybrids that can enjoy accurate and robust predictions, and resolve issues with data analysis that Breiman describes, such as the Rashomon effect and Occams dilemma. Challenges still remain in finding an appropriate point in model space, with many choices on how to compose model components and the degree to which each component informs inferences.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا