Do you want to publish a course? Click here

Detection of CH$^{+}$, CH and H$_2$ molecules in the Young Planetary Nebula IC 4997

67   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have detected CH$^{+}$ and CH molecular absorption lines from the young compact planetary nebula IC 4997 from high resolution optical spectra. A high-resolution infra-red (H and K bands) spectrum provides detection of H$_2$ emission lines amongst many other lines. The H$_2$ lines provide an excitation temperature of 2100 K which may result from UV fluorescence in the envelope or from shocks formed at the interface between an expanding outflow of ionized gas and the neutral envelope ejected when the star was on the AGB. It is suggested that the CH$^+$ may result from the endothermic reaction C + H$_2$ $rightarrow$ CH$^+$ + H. Intriguingly, CH$^{+}$ and also CH show a higher expansion velocity than H$_{rm 2}$ emission suggesting they may be part of the post-shocked gas.



rate research

Read More

The ACIS-S camera on board the Chandra X-ray Observatory has been used to discover a hot bubble in the planetary nebula (PN) IC4593, the most distant PN detected by Chandra so far. The data are used to study the distribution of the X-ray-emitting gas in IC 4593 and to estimate its physical properties. The hot bubble has a radius of ~2$^{primeprime}$ and is found to be confined inside the optically-bright innermost cavity of IC 4593. The X-ray emission is mostly consistent with that of an optically-thin plasma with temperature $kTapprox0.15$ keV (or $T_mathrm{X}approx1.7times10^{6}$ K), electron density $n_mathrm{e}approx15$ cm$^{-3}$, and intrinsic X-ray luminosity in the 0.3-1.5 keV energy range $L_mathrm{X}=3.4times10^{30}$ erg s$^{-1}$. A careful analysis of the distribution of hard ($E>$0.8 keV) photons in IC 4593 suggests the presence of X-ray emission from a point source likely associated with its central star (CSPN). If this were the case, its estimated X-ray luminosity would be $L_mathrm{X,CSPN}=7times10^{29}$ erg s$^{-1}$, fulfilling the log$(L_mathrm{X,CSPN}/L_mathrm{bol})approx-7$ relation for self-shocking winds in hot stars. The X-ray detection of the CSPN helps explain the presence of high-ionisation species detected in the UV spectra as predicted by stellar atmosphere models.
We present the observational result of a glycine precursor, methylamine (CH$_3$NH$_2$), together with methanol (CH$_3$OH) and methanimine (CH$_2$NH) towards high-mass star-forming regions, NGC6334I, G10.47+0.03, G31.41+0.3, and W51~e1/e2 using ALMA. The molecular abundances toward these sources were derived using the rotational diagram method and compared with our state-of-the-art chemical model. We found that the observed ratio of CH$_3$NH$_2$/CH$_3$OH is in between 0.11 and 2.2. We also found that the observed CH$_3$NH$_2$/CH$_3$OH ratio agrees well with our chemical model by considering the formation of CH$_3$NH$_2$ on the grain surface via hydrogenation process to HCN. This result clearly shows the importance of hydrogenation processes to form CH$_3$NH$_2$. NGC63343I MM3, where CH$_3$NH$_2$ was not detected in this study and showed CH$_3$NH$_2$/CH$_3$OH ratio of less than 0.02, is clearly distinguished from the other cores.
While recent studies of the solar-mass protostar IRAS16293-2422 have focused on its inner arcsecond, the wealth of Herschel/HIFI data has shown that the structure of the outer envelope and of the transition region to the more diffuse ISM is not clearly constrained. We use rotational ground-state transitions of CH (methylidyne), as a tracer of the lower-density envelope. Assuming LTE, we perform a $chi^2$ minimization of the high spectral resolution HIFI observations of the CH transitions at ~532 and ~536 GHz in order to derive column densities in the envelope and in the foreground cloud. We obtain column densities of (7.7$pm$0.2)$times10^{13}$ cm$^{-2}$ and (1.5$pm$0.3)$times10^{13}$ cm$^{-2}$, respectively. The chemical modeling predicts column densities of (0.5-2)$times10^{13}$ cm$^{-2}$ in the envelope (depending on the cosmic-ray ionization rate), and 5$times10^{11}$ to 2.5$times10^{14}$ cm$^{-2}$ in the foreground cloud (depending on time). Both observed abundances are reproduced by the model at a satisfactory level. The constraints set by these observations on the physical conditions in the foreground cloud are however weak. Furthermore, the CH abundance in the envelope is strongly affected by the rate coefficient of the reaction H+CH$rightarrow$C+H$_2$ ; further investigation of its value at low temperature would be necessary to facilitate the comparison between the model and the observations.
The precursors to larger, biologically-relevant molecules are detected throughout interstellar space, but determining the presence and properties of these molecules during planet formation requires observations of protoplanetary disks at high angular resolution and sensitivity. Here we present 0.3 observations of HC$_3$N, CH$_3$CN, and $c$-C$_3$H$_2$ in five protoplanetary disks observed as part of the Molecules with ALMA at Planet-forming Scales (MAPS) Large Program. We robustly detect all molecules in four of the disks (GM Aur, AS 209, HD 163296 and MWC 480) with tentative detections of $c$-C$_3$H$_2$ and CH$_3$CN in IM Lup. We observe a range of morphologies -- central peaks, single or double rings -- with no clear correlation in morphology between molecule nor disk. Emission is generally compact and on scales comparable with the millimetre dust continuum. We perform both disk-integrated and radially-resolved rotational diagram analysis to derive column densities and rotational temperatures. The latter reveals 5-10 times more column density in the inner 50-100 au of the disks when compared with the disk-integrated analysis. We demonstrate that CH$_3$CN originates from lower relative heights in the disks when compared with HC$_3$N, in some cases directly tracing the disk midplane. Finally, we find good agreement between the ratio of small to large nitriles in the outer disks and comets. Our results indicate that the protoplanetary disks studied here are host to significant reservoirs of large organic molecules, and that this planet- and comet-building material can be chemically similar to that in our own Solar System. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement Series.
We present high-angular-resolution {it Hubble Space Telescope (HST)} optical and near-infrared imaging of the compact planetary nebula (PN) IRAS 21282+5050. Optical images of this object reveal several complex morphological structures including three pairs of bipolar lobes and an elliptical shell lying close to the plane of the sky. From near-infrared observations, we found a dust torus oriented nearly perpendicular to the major axis of elliptical shell. The results suggest that IRAS 21282+5050 is a multipolar PN, and these structures developed early during the post asymptotic-giant-branch (AGB) evolution. From a three-dimensional (3-D) model, we derived the physical dimensions of these apparent structures. When the 3-D model is viewed from different orientations, IRAS 21282+5050 shows similar apparent structures as other multipolar PNs. Analysis of the spectral energy distribution and optical spectroscopic observations of the nebula suggests the presence of a cool companion to the hot central star responsible for the ionization of the nebula. Whether the binary nature of the central star has any relations with the multipolar structure of the nebula needs to be further investigated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا