No Arabic abstract
Sentence representation models trained only on language could potentially suffer from the grounding problem. Recent work has shown promising results in improving the qualities of sentence representations by jointly training them with associated image features. However, the grounding capability is limited due to distant connection between input sentences and image features by the design of the architecture. In order to further close the gap, we propose applying self-attention mechanism to the sentence encoder to deepen the grounding effect. Our results on transfer tasks show that self-attentive encoders are better for visual grounding, as they exploit specific words with strong visual associations.
We present a visually grounded model of speech perception which projects spoken utterances and images to a joint semantic space. We use a multi-layer recurrent highway network to model the temporal nature of spoken speech, and show that it learns to extract both form and meaning-based linguistic knowledge from the input signal. We carry out an in-depth analysis of the representations used by different components of the trained model and show that encoding of semantic aspects tends to become richer as we go up the hierarchy of layers, whereas encoding of form-related aspects of the language input tends to initially increase and then plateau or decrease.
One of the most popular paradigms of applying large, pre-trained NLP models such as BERT is to fine-tune it on a smaller dataset. However, one challenge remains as the fine-tuned model often overfits on smaller datasets. A symptom of this phenomenon is that irrelevant words in the sentences, even when they are obvious to humans, can substantially degrade the performance of these fine-tuned BERT models. In this paper, we propose a novel technique, called Self-Supervised Attention (SSA) to help facilitate this generalization challenge. Specifically, SSA automatically generates weak, token-level attention labels iteratively by probing the fine-tuned model from the previous iteration. We investigate two different ways of integrating SSA into BERT and propose a hybrid approach to combine their benefits. Empirically, on a variety of public datasets, we illustrate significant performance improvement using our SSA-enhanced BERT model.
We present the Visually Grounded Neural Syntax Learner (VG-NSL), an approach for learning syntactic representations and structures without any explicit supervision. The model learns by looking at natural images and reading paired captions. VG-NSL generates constituency parse trees of texts, recursively composes representations for constituents, and matches them with images. We define concreteness of constituents by their matching scores with images, and use it to guide the parsing of text. Experiments on the MSCOCO data set show that VG-NSL outperforms various unsupervised parsing approaches that do not use visual grounding, in terms of F1 scores against gold parse trees. We find that VGNSL is much more stable with respect to the choice of random initialization and the amount of training data. We also find that the concreteness acquired by VG-NSL correlates well with a similar measure defined by linguists. Finally, we also apply VG-NSL to multiple languages in the Multi30K data set, showing that our model consistently outperforms prior unsupervised approaches.
With the aim of promoting and understanding the multilingual version of image search, we leverage visual object detection and propose a model with diverse multi-head attention to learn grounded multilingual multimodal representations. Specifically, our model attends to different types of textual semantics in two languages and visual objects for fine-grained alignments between sentences and images. We introduce a new objective function which explicitly encourages attention diversity to learn an improved visual-semantic embedding space. We evaluate our model in the German-Image and English-Image matching tasks on the Multi30K dataset, and in the Semantic Textual Similarity task with the English descriptions of visual content. Results show that our model yields a significant performance gain over other methods in all of the three tasks.
Although BERT and its variants have reshaped the NLP landscape, it still remains unclear how best to derive sentence embeddings from such pre-trained Transformers. In this work, we propose a contrastive learning method that utilizes self-guidance for improving the quality of BERT sentence representations. Our method fine-tunes BERT in a self-supervised fashion, does not rely on data augmentation, and enables the usual [CLS] token embeddings to function as sentence vectors. Moreover, we redesign the contrastive learning objective (NT-Xent) and apply it to sentence representation learning. We demonstrate with extensive experiments that our approach is more effective than competitive baselines on diverse sentence-related tasks. We also show it is efficient at inference and robust to domain shifts.