Do you want to publish a course? Click here

Active Learning for Linear Parameter-Varying System Identification

302   0   0.0 ( 0 )
 Added by Robert Chin
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Active learning is proposed for selection of the next operating points in the design of experiments, for identifying linear parameter-varying systems. We extend existing approaches found in literature to multiple-input multiple-output systems with a multivariate scheduling parameter. Our approach is based on exploiting the probabilistic features of Gaussian process regression to quantify the overall model uncertainty across locally identified models. This results in a flexible framework which accommodates for various techniques to be applied for estimation of local linear models and their corresponding uncertainty. We perform active learning in application to the identification of a diesel engine air-path model, and demonstrate that measures of model uncertainty can be successfully reduced using the proposed framework.

rate research

Read More

We consider a cooperative system identification scenario in which an expert agent (teacher) knows a correct, or at least a good, model of the system and aims to assist a learner-agent (student), but cannot directly transfer its knowledge to the student. For example, the teachers knowledge of the system might be abstract or the teacher and student might be employing different model classes, which renders the teachers parameters uninformative to the student. In this paper, we propose correctional learning as an approach to the above problem: Suppose that in order to assist the student, the teacher can intercept the observations collected from the system and modify them to maximize the amount of information the student receives about the system. We formulate a general solution as an optimization problem, which for a multinomial system instantiates itself as an integer program. Furthermore, we obtain finite-sample results on the improvement that the assistance from the teacher results in (as measured by the reduction in the variance of the estimator) for a binomial system.
The study of multiplicative noise models has a long history in control theory but is re-emerging in the context of complex networked systems and systems with learning-based control. We consider linear system identification with multiplicative noise from multiple state-input trajectory data. We propose exploratory input signals along with a least-squares algorithm to simultaneously estimate nominal system parameters and multiplicative noise covariance matrices. Identifiability of the covariance structure and asymptotic consistency of the least-squares estimator are demonstrated by analyzing first and second moment dynamics of the system. The results are illustrated by numerical simulations.
50 - Yun Feng , Han-Xiong Li 2019
Identification of abnormal source hidden in distributed parameter systems (DPSs) belongs to the category of inverse source problems. It is important in industrial applications but seldom studied. In this paper, we make the first attempt to investigate the abnormal spatio-temporal (S-T) source identification for a class of DPSs. An inverse S-T model for abnormal source identification is developed for the first time. It consists of an adaptive state observer for source identification and an adaptive source estimation algorithm. One major advantage of the proposed inverse S-T model is that only the system output is utilized, without any state measurement. Theoretic analysis is conducted to guarantee the convergence of the estimation error. Finally, the performance of the proposed method is evaluated on a heat transfer rod with an abnormal S-T source.
In this paper, we present a virtual control contraction metric (VCCM) based nonlinear parameter-varying (NPV) approach to design a state-feedback controller for a control moment gyroscope (CMG) to track a user-defined trajectory set. This VCCM based nonlinear stabilization and performance synthesis approach, which is similar to linear parameter-varying (LPV) control approaches, allows to achieve exact guarantees of exponential stability and $mathcal{L}_2$-gain performance on nonlinear systems with respect to all trajectories from the predetermined set, which is not the case with the conventional LPV methods. Simulation and experimental studies conducted in both fully- and under-actuated operating modes of the CMG show effectiveness of this approach compared to standard LPV control methods.
Parameter estimation is of foundational importance for various model-based battery management tasks, including charging control, state-of-charge estimation and aging assessment. However, it remains a challenging issue as the existing methods generally depend on cumbersome and time-consuming procedures to extract battery parameters from data. Departing from the literature, this paper sets the unique aim of identifying all the parameters offline in a one-shot procedure, including the resistance and capacitance parameters and the parameters in the parameterized function mapping from the state-of-charge to the open-circuit voltage. Considering the well-known Thevenins battery model, the study begins with the parameter identifiability analysis, showing that all the parameters are locally identifiable. Then, it formulates the parameter identification problem in a prediction-error-minimization framework. As the non-convexity intrinsic to the problem may lead to physically meaningless estimates, two methods are developed to overcome this issue. The first one is to constrain the parameter search within a reasonable space by setting parameter bounds, and the other adopts regularization of the cost function using prior parameter guess. The proposed identifiability analysis and identification methods are extensively validated through simulations and experiments.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا