Do you want to publish a course? Click here

1,2,3-Conjecture and 1,2-Conjecture for Sparse Graphs

167   0   0.0 ( 0 )
 Added by Daniel Cranston
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

We apply the Discharging Method to prove the 1,2,3-Conjecture and the 1,2-Conjecture for graphs with maximum average degree less than 8/3. Stronger results on these conjectures have been proved, but this is the first application of discharging to them, and the structure theorems and reducibility results are of independent interest.



rate research

Read More

Tuza famously conjectured in 1981 that in a graph without k+1 edge-disjoint triangles, it suffices to delete at most 2k edges to obtain a triangle-free graph. The conjecture holds for graphs with small treewidth or small maximum average degree, including planar graphs. However, for dense graphs that are neither cliques nor 4-colorable, only asymptotic results are known. Here, we confirm the conjecture for threshold graphs, i.e. graphs that are both split graphs and cographs, and for co-chain graphs with both sides of the same size divisible by 4.
Loebl, Komlos and Sos conjectured that every $n$-vertex graph $G$ with at least $n/2$ vertices of degree at least $k$ contains each tree $T$ of order $k+1$ as a subgraph. We give a sketch of a proof of the approximate version of this conjecture for large values of $k$. For our proof, we use a structural decomposition which can be seen as an analogue of Szemeredis regularity lemma for possibly very sparse graphs. With this tool, each graph can be decomposed into four parts: a set of vertices of huge degree, regular pairs (in the sense of the regularity lemma), and two other objects each exhibiting certain expansion properties. We then exploit the properties of each of the parts of $G$ to embed a given tree $T$. The purpose of this note is to highlight the key steps of our proof. Details can be found in [arXiv:1211.3050].
Hadwigers conjecture is one of the most important and long-standing conjectures in graph theory. Reed and Seymour showed in 2004 that Hadwigers conjecture is true for line graphs. We investigate this conjecture on the closely related class of total graphs. The total graph of $G$, denoted by $T(G)$, is defined on the vertex set $V(G)sqcup E(G)$ with $c_1,c_2in V(G)sqcup E(G)$ adjacent whenever $c_1$ and $c_2$ are adjacent to or incident on each other in $G$. We first show that there exists a constant $C$ such that, if the connectivity of $G$ is at least $C$, then Hadwigers conjecture is true for $T(G)$. The total chromatic number $chi(G)$ of a graph $G$ is defined to be equal to the chromatic number of its total graph. That is, $chi(G)=chi(T(G))$. Another well-known conjecture in graph theory, the total coloring conjecture or TCC, states that for every graph $G$, $chi(G)leqDelta(G)+2$, where $Delta(G)$ is the maximum degree of $G$. We show that if a weaker version of the total coloring conjecture (weak TCC) namely, $chi(G)leqDelta(G)+3$, is true for a class of graphs $mathcal{F}$ that is closed under the operation of taking subgraphs, then Hadwigers conjecture is true for the class of total graphs of graphs in $mathcal{F}$. This motivated us to look for classes of graphs that satisfy weak TCC. It may be noted that a complete proof of TCC for even 4-colorable graphs (in fact even for planar graphs) has remained elusive even after decades of effort; but weak TCC can be proved easily for 4-colorable graphs. We noticed that in spite of the interest in studying $chi(G)$ in terms of $chi(G)$ right from the initial days, weak TCC is not proven to be true for $k$-colorable graphs even for $k=5$. In the second half of the paper, we make a contribution to the literature on total coloring by proving that $chi(G)leqDelta(G)+3$ for every 5-colorable graph $G$.
118 - Jacob D. Baron , Jeff Kahn 2014
An old conjecture of Zs. Tuza says that for any graph $G$, the ratio of the minimum size, $tau_3(G)$, of a set of edges meeting all triangles to the maximum size, $ u_3(G)$, of an edge-disjoint triangle packing is at most 2. Here, disproving a conjecture of R. Yuster, we show that for any fixed, positive $alpha$ there are arbitrarily large graphs $G$ of positive density satisfying $tau_3(G)>(1-o(1))|G|/2$ and $ u_3(G)<(1+alpha)|G|/4$.
In 1972, Tutte posed the $3$-Flow Conjecture: that all $4$-edge-connected graphs have a nowhere zero $3$-flow. This was extended by Jaeger et al.(1992) to allow vertices to have a prescribed, possibly non-zero difference (modulo $3$) between the inflow and outflow. They conjectured that all $5$-edge-connected graphs with a valid prescription function have a nowhere zero $3$-flow meeting that prescription. Kochol (2001) showed that replacing $4$-edge-connected with $5$-edge-connected would suffice to prove the $3$-Flow Conjecture and Lovasz et al.(2013) showed that both conjectures hold if the edge connectivity condition is relaxed to $6$-edge-connected. Both problems are still open for $5$-edge-connected graphs. The $3$-Flow Conjecture was known to hold for planar graphs, as it is the dual of Grotzschs Colouring Theorem. Steinberg and Younger (1989) provided the first direct proof using flows for planar graphs, as well as a proof for projective planar graphs. Richter et al.(2016) provided the first direct proof using flows of the Strong $3$-Flow Conjecture for planar graphs. We prove the Strong $3$-Flow Conjecture for projective planar graphs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا