Do you want to publish a course? Click here

A continuous-time state-space model for rapid quality-control of Argos locations from animal-borne tags

143   0   0.0 ( 0 )
 Added by Ian Jonsen
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

State-space models are important tools for quality control of error-prone animal movement data. The near real-time (within 24 h) capability of the Argos satellite system aids dynamic ocean management of human activities by informing when animals enter intensive use zones. This capability also facilitates use of ocean observations from animal-borne sensors in operational ocean forecasting models. Such near real-time data provision requires rapid, reliable quality control to deal with error-prone Argos locations. We formulate a continuous-time state-space model for the three types of Argos location data (Least-Squares, Kalman filter, and Kalman smoother), accounting for irregular timing of observations. Our model is deliberately simple to ensure speed and reliability for automated, near real-time quality control of Argos data. We validate the model by fitting to Argos data collected from 61 individuals across 7 marine vertebrates and compare model-estimated locations to GPS locations. Estimation accuracy varied among species with median Root Mean Squared Errors usually < 5 km and decreased with increasing data sampling rate and precision of Argos locations. Including a model parameter to inflate Argos error ellipse sizes resulted in more accurate location estimates. In some cases, the model appreciably improved the accuracy of the Argos Kalman smoother locations, which should not be possible if the smoother uses all available information. Our model provides quality-controlled locations from Argos Least-Squares or Kalman filter data with slightly better accuracy than Argos Kalman smoother data that are only available via reprocessing. Simplicity and ease of use make the model suitable both for automated quality control of near real-time Argos data and for manual use by researchers working with historical Argos data.



rate research

Read More

A chemometric data analysis challenge has been arranged during the first edition of the International Workshop on Spectroscopy and Chemometrics, organized by the Vistamilk SFI Research Centre and held online in April 2021. The aim of the competition was to build a calibration model in order to predict milk quality traits exploiting the information contained in mid-infrared spectra only. Three different traits have been provided, presenting heterogeneous degrees of prediction complexity thus possibly requiring trait-specific modelling choices. In this paper the different approaches adopted by the participants are outlined and the insights obtained from the analyses are critically discussed.
As very large studies of complex neuroimaging phenotypes become more common, human quality assessment of MRI-derived data remains one of the last major bottlenecks. Few attempts have so far been made to address this issue with machine learning. In this work, we optimize predictive models of quality for meshes representing deep brain structure shapes. We use standard vertex-wise and global shape features computed homologously across 19 cohorts and over 7500 human-rated subjects, training kernelized Support Vector Machine and Gradient Boosted Decision Trees classifiers to detect meshes of failing quality. Our models generalize across datasets and diseases, reducing human workload by 30-70%, or equivalently hundreds of human rater hours for datasets of comparable size, with recall rates approaching inter-rater reliability.
Observed gonorrhea case rates (number of positive tests per 100,000 individuals) increased by 75 percent in the United States between 2009 and 2017, predominantly among men. However, testing recommendations by the Centers for Disease Control and Prevention (CDC) have also changed over this period with more frequent screening for sexually transmitted infections (STIs) recommended among men who have sex with men (MSM) who are sexually active. In this and similar disease surveillance settings, a common question is whether observed increases in the overall proportion of positive tests over time is due only to increased testing of diseased individuals, increased underlying disease or both. By placing this problem within a counterfactual framework, we can carefully consider untestable assumptions under which this question may be answered and, in turn, a principled approach to statistical analysis. This report outlines this thought process.
99 - Xiuqin Xu , Ying Chen 2021
We propose a deep switching state space model (DS$^3$M) for efficient inference and forecasting of nonlinear time series with irregularly switching among various regimes. The switching among regimes is captured by both discrete and continuous latent variables with recurrent neural networks. The model is estimated with variational inference using a reparameterization trick. We test the approach on a variety of simulated and real datasets. In all cases, DS$^3$M achieves competitive performance compared to several state-of-the-art methods (e.g. GRU, SRNN, DSARF, SNLDS), with superior forecasting accuracy, convincing interpretability of the discrete latent variables, and powerful representation of the continuous latent variables for different kinds of time series. Specifically, the MAPE values increase by 0.09% to 15.71% against the second-best performing alternative models.
Understanding and even defining what constitutes animal interactions remains a challenging problem. Correlational tools may be inappropriate for detecting communication between a set of many agents exhibiting nonlinear behavior. A different approach is to define coordinated motions in terms of an information theoretic channel of direct causal information flow. In this work, we consider time series data obtained by an experimental protocol of optical tracking of the insect species Chironomus riparius. The data constitute reconstructed 3-D spatial trajectories of the insects flight trajectories and kinematics. We present an application of the optimal causation entropy (oCSE) principle to identify direct causal relationships or information channels among the insects. The collection of channels inferred by oCSE describes a network of information flow within the swarm. We find that information channels with a long spatial range are more common than expected under the assumption that causal information flows should be spatially localized. The tools developed herein are general and applicable to the inference and study of intercommunication networks in a wide variety of natural settings.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا