No Arabic abstract
In this paper, we exhibit the equivalence between different notions of unique range sets, namely, unique range sets, weighted unique range sets and weak-weighted unique range sets under certain conditions.par Also, we present some uniqueness theorems which show how two meromorphic functions are uniquely determined by their two finite shared sets. Moreover, in the last section, we make some observations that help us to construct other new classes of unique range sets.
This paper studies the uniqueness of two non-constant meromorphic functions when they share a finite set. Moreover, we will give the existence of unique range sets for meromorphic functions that are zero sets of polynomials that do not necessarily satisfy the Fujimotos hypothesis.
This paper studies the uniqueness of two non-integral finite ordered meromorphic functions with finitely many poles when they share two finite sets. Also, studies an answer to a question posed by Gross for a particular class of meromorphic functions. Moreover, some observations are made on some results due to Sahoo and Karmakar ( Acta Univ. Sapientiae, Mathematica, DOI: 10.2478/ausm-2018-0025) and Sahoo and Sarkar (Bol. Soc. Mat. Mex., DOI: 10.1007/s40590-019-00260-4).
We introduce and analyze some numerical results obtained by the authors experimentally. These experiments are related to the well known problem about the distribution of the zeros of Hermite--Pade polynomials for a collection of three functions $[f_0 equiv 1,f_1,f_2]$. The numerical results refer to two cases: a pair of functions $f_1,f_2$ forms an Angelesco system and a pair of functions $f_1=f,f_2=f^2$ forms a (generalized) Nikishin system. The authors hope that the obtained numerical results will set up a new conjectures about the limiting distribution of the zeros of Hermite--Pade polynomials.
Determination of the range of a variety of social choice correspondences: Plurality voting, the Borda rule, the Pareto rule, the Copeland correspondence, approval voting, and the top cycle correspondence
It was known to von Neumann in the 1950s that the integer lattice $mathbb{Z}^2$ forms a uniqueness set for the Bargmann-Fock space. It was later demonstrated by Seip and Wallsten that a sequence of points $Gamma$ that is uniformly close to the integer lattice is still a uniqueness set. We show in this paper that the uniqueness sets for the Fock space are preserved under much more general perturbations.