Do you want to publish a course? Click here

MUSS: Multilingual Unsupervised Sentence Simplification by Mining Paraphrases

140   0   0.0 ( 0 )
 Added by Louis Martin
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Progress in sentence simplification has been hindered by a lack of labeled parallel simplification data, particularly in languages other than English. We introduce MUSS, a Multilingual Unsupervised Sentence Simplification system that does not require labeled simplification data. MUSS uses a novel approach to sentence simplification that trains strong models using sentence-level paraphrase data instead of proper simplification data. These models leverage unsupervised pretraining and controllable generation mechanisms to flexibly adjust attributes such as length and lexical complexity at inference time. We further present a method to mine such paraphrase data in any language from Common Crawl using semantic sentence embeddings, thus removing the need for labeled data. We evaluate our approach on English, French, and Spanish simplification benchmarks and closely match or outperform the previous best supervised results, despite not using any labeled simplification data. We push the state of the art further by incorporating labeled simplification data.



rate research

Read More

Machine translation is highly sensitive to the size and quality of the training data, which has led to an increasing interest in collecting and filtering large parallel corpora. In this paper, we propose a new method for this task based on multilingual sentence embeddings. In contrast to previous approaches, which rely on nearest neighbor retrieval with a hard threshold over cosine similarity, our proposed method accounts for the scale inconsistencies of this measure, considering the margin between a given sentence pair and its closest candidates instead. Our experiments show large improvements over existing methods. We outperform the best published results on the BUCC mining task and the UN reconstruction task by more than 10 F1 and 30 precision points, respectively. Filtering the English-German ParaCrawl corpus with our approach, we obtain 31.2 BLEU points on newstest2014, an improvement of more than one point over the best official filtered version.
Text simplification aims at making a text easier to read and understand by simplifying grammar and structure while keeping the underlying information identical. It is often considered an all-purpose generic task where the same simplification is suitable for all; however multiple audiences can benefit from simplified text in different ways. We adapt a discrete parametrization mechanism that provides explicit control on simplification systems based on Sequence-to-Sequence models. As a result, users can condition the simplifications returned by a model on attributes such as length, amount of paraphrasing, lexical complexity and syntactic complexity. We also show that carefully chosen values of these attributes allow out-of-the-box Sequence-to-Sequence models to outperform their standard counterparts on simplification benchmarks. Our model, which we call ACCESS (as shorthand for AudienCe-CEntric Sentence Simplification), establishes the state of the art at 41.87 SARI on the WikiLarge test set, a +1.42 improvement over the best previously reported score.
350 - Xinyu Lu , Jipeng Qiang , Yun Li 2021
The availability of parallel sentence simplification (SS) is scarce for neural SS modelings. We propose an unsupervised method to build SS corpora from large-scale bilingual translation corpora, alleviating the need for SS supervised corpora. Our method is motivated by the following two findings: neural machine translation model usually tends to generate more high-frequency tokens and the difference of text complexity levels exists between the source and target language of a translation corpus. By taking the pair of the source sentences of translation corpus and the translations of their references in a bridge language, we can construct large-scale pseudo parallel SS data. Then, we keep these sentence pairs with a higher complexity difference as SS sentence pairs. The building SS corpora with an unsupervised approach can satisfy the expectations that the aligned sentences preserve the same meanings and have difference in text complexity levels. Experimental results show that SS methods trained by our corpora achieve the state-of-the-art results and significantly outperform the results on English benchmark WikiLarge.
243 - Yan Zhang , Ruidan He , Zuozhu Liu 2020
BERT is inefficient for sentence-pair tasks such as clustering or semantic search as it needs to evaluate combinatorially many sentence pairs which is very time-consuming. Sentence BERT (SBERT) attempted to solve this challenge by learning semantically meaningful representations of single sentences, such that similarity comparison can be easily accessed. However, SBERT is trained on corpus with high-quality labeled sentence pairs, which limits its application to tasks where labeled data is extremely scarce. In this paper, we propose a lightweight extension on top of BERT and a novel self-supervised learning objective based on mutual information maximization strategies to derive meaningful sentence embeddings in an unsupervised manner. Unlike SBERT, our method is not restricted by the availability of labeled data, such that it can be applied on different domain-specific corpus. Experimental results show that the proposed method significantly outperforms other unsupervised sentence embedding baselines on common semantic textual similarity (STS) tasks and downstream supervised tasks. It also outperforms SBERT in a setting where in-domain labeled data is not available, and achieves performance competitive with supervised methods on various tasks.
Paraphrases, the rewordings of the same semantic meaning, are useful for improving generalization and translation. However, prior works only explore paraphrases at the word or phrase level, not at the sentence or corpus level. Unlike previous works that only explore paraphrases at the word or phrase level, we use different translations of the whole training data that are consistent in structure as paraphrases at the corpus level. We train on parallel paraphrases in multiple languages from various sources. We treat paraphrases as foreign languages, tag source sentences with paraphrase labels, and train on parallel paraphrases in the style of multilingual Neural Machine Translation (NMT). Our multi-paraphrase NMT that trains only on two languages outperforms the multilingual baselines. Adding paraphrases improves the rare word translation and increases entropy and diversity in lexical choice. Adding the source paraphrases boosts performance better than adding the target ones. Combining both the source and the target paraphrases lifts performance further; combining paraphrases with multilingual data helps but has mixed performance. We achieve a BLEU score of 57.2 for French-to-English translation using 24 corpus-level paraphrases of the Bible, which outperforms the multilingual baselines and is +34.7 above the single-source single-target NMT baseline.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا