No Arabic abstract
Depending on the geometry of their Fermi surfaces, Weyl semimetals and their analogues in classical systems have been classified into two types. In type I Weyl semimetals (WSMs), the cone-like spectrum at the Weyl point (WP) is not tilted, leading to a point-like closed Fermi surface. In type II WSMs, on the contrary, the energy spectrum around the WP is strongly tilted such that the Fermi surface transforms from a point into an open surface. Here, we demonstrate, both theoretically and experimentally, a new type of (classical) Weyl semimetal whose Fermi surface is neither a point nor a surface, but a flat line. The distinctive Fermi surfaces of such semimetals, dubbed as type III or zero-index WSMs, gives rise to unique physical properties: one of the edge modes of the semimetal exhibits a zero index of refraction along a specific direction, in stark contrast to types I and II WSMs for which the index of refraction is always non-zero. We show that the zero-index response of such topological phases enables exciting applications such as extraordinary wave transmission (EOT).
The recent breakthrough in metamaterial-based optical computing devices [Science 343, 160 (2014)] has inspired a quest for similar systems in acoustics, performing mathematical operations on sound waves. So far, acoustic analog computing has been demonstrated using thin planar metamaterials, carrying out the operator of choice in Fourier domain. These so-called filtering metasurfaces, however, are always accompanied with additional Fourier transform sub-blocks, enlarging the computing system and preventing its applicability in miniaturized architectures. Here, employing a simple high-index acoustic slab waveguide, we demonstrate a highly compact and potentially integrable acoustic computing system. The system directly performs mathematical operation in spatial domain and is therefore free of any Fourier bulk lens. Such compact computing system is highly promising for various applications including high throughput image processing, ultrafast equation solving, and real time signal processing.
Metamaterials have recently established a new paradigm for enhanced light absorption in state-of-the-art photodetectors. Here, we demonstrate broadband, highly efficient, polarization-insensitive, and gate-tunable photodetection at room temperature in a novel metadevice based on gold/graphene Sierpinski carpet plasmonic fractals. We observed an unprecedented internal quantum efficiency up to 100% from the near-infrared to the visible range with an upper bound of optical detectivity of $10^{11}$ Jones and a gain up to $10^{6}$, which is a fingerprint of multiple hot carriers photogenerated in graphene. Also, we show a 100-fold enhanced photodetection due to highly focused (up to a record factor of $|E/E_{0}|approx20$ for graphene) electromagnetic fields induced by electrically tunable multimodal plasmons, spatially localized in self-similar fashion on the metasurface. Our findings give direct insight into the physical processes governing graphene plasmonic fractal metamaterials. The proposed structure represents a promising route for the realization of a broadband, compact, and active platform for future optoelectronic devices including multiband bio/chemical and light sensors.
Higher-order topological insulators exhibit multidimensional topological physics and unique application values due to their ability of integrating stable boundary states at multiple dimensions in a single chip. However, for signal-processing applications in high-frequency mechanical systems, the current realizations of higher-order topological mechanical materials are still limited to large-scale systems for kilohertz or lower frequencies. Here, we report the experimental observation of a on-chip micromechanical metamaterial as higher-order topological insulator for high-frequency mechanical waves. The higher-order topological phononic band gap is induced by the band inversion at the Brillouin zone corner which is achieved by configuring the orientations of the elliptic pillars etched on the silicon chip. With consistent experiments and theory, we demonstrate the coexistence of topological edge and corner states in the megahertz frequency regime as induced by the higher-order band topology. The experimental realization of on-chip micromechanical metamaterials with higher-order topology opens a regime for applications based on megahertz mechanical waves in an integrated platform where the edge and corner states act as stable waveguides and resonators, respectively.
We use computational approaches to explore the role of a high-refractive-index dielectric TiO2 grating with deep subwavelength thickness on InSb as a tunable coupler for THz surface plasmons. We find a series of resonances as the grating couples a normally-incident THz wave to standing surface plasmon waves on both thin and thick InSb layers. In a marked contrast with previously-explored metallic gratings, we observe the emergence of a much stronger additional resonance. The mechanism of this giant plasmonic resonance is well interpreted by the dispersion of surface plasmon excited in the airTiO2InSb trilayer system. We demonstrate that both the frequency and the intensity of the giant resonance can be tuned by varying dielectric grating parameters, providing more flexible tunability than metallic gratings. The phase and amplitude of the normally-incident THz wave are spatially modulated by the dielectric grating to optimize the surface plasmon excitation. The giant surface plasmon resonance gives rise to strong enhancement of the electric field above the grating structure, which can be useful in sensing and spectroscopy applications.
High-harmonic generation (HHG) from a compact, solid-state medium is highly desirable for applications such as coherent attosecond pulse generation and extreme ultra-violet (EUV) spectroscopy, yet the typically weak conversion of pump light to HHG can largely hinder its applications. Here, we use a material operating in its epsilon-near-zero (ENZ) region, where the real part of its permittivity vanishes, to greatly boost the efficiency of the HHG process at the microscopic level. In experiments, we report high-harmonic emission up to the 9th order directly from a low-loss, solid-state ENZ medium: indium-doped cadmium oxide, with an excitation intensity at the GW cm-2 level. Furthermore, the observed HHG signal exhibits a pronounced spectral red-shift as well as linewidth broadening, resulting from the photo-induced electron heating and the consequent time-dependent resonant frequency of the ENZ film. Our results provide a novel nanophotonic platform for strong field physics, reveal new degrees of freedom for spectral and temporal control of HHG, and open up possibilities of compact solid-state attosecond light sources.