No Arabic abstract
Audio-guided face reenactment aims at generating photorealistic faces using audio information while maintaining the same facial movement as when speaking to a real person. However, existing methods can not generate vivid face images or only reenact low-resolution faces, which limits the application value. To solve those problems, we propose a novel deep neural network named APB2Face, which consists of GeometryPredictor and FaceReenactor modules. GeometryPredictor uses extra head pose and blink state signals as well as audio to predict the latent landmark geometry information, while FaceReenactor inputs the face landmark image to reenact the photorealistic face. A new dataset AnnVI collected from YouTube is presented to support the approach, and experimental results indicate the superiority of our method than state-of-the-arts, whether in authenticity or controllability.
Generating photorealistic images of human subjects in any unseen pose have crucial applications in generating a complete appearance model of the subject. However, from a computer vision perspective, this task becomes significantly challenging due to the inability of modelling the data distribution conditioned on pose. Existing works use a complicated pose transformation model with various additional features such as foreground segmentation, human body parsing etc. to achieve robustness that leads to computational overhead. In this work, we propose a simple yet effective pose transformation GAN by utilizing the Residual Learning method without any additional feature learning to generate a given human image in any arbitrary pose. Using effective data augmentation techniques and cleverly tuning the model, we achieve robustness in terms of illumination, occlusion, distortion and scale. We present a detailed study, both qualitative and quantitative, to demonstrate the superiority of our model over the existing methods on two large datasets.
We propose an image-based, facial reenactment system that replaces the face of an actor in an existing target video with the face of a user from a source video, while preserving the original target performance. Our system is fully automatic and does not require a database of source expressions. Instead, it is able to produce convincing reenactment results from a short source video captured with an off-the-shelf camera, such as a webcam, where the user performs arbitrary facial gestures. Our reenactment pipeline is conceived as part image retrieval and part face transfer: The image retrieval is based on temporal clustering of target frames and a novel image matching metric that combines appearance and motion to select candidate frames from the source video, while the face transfer uses a 2D warping strategy that preserves the users identity. Our system excels in simplicity as it does not rely on a 3D face model, it is robust under head motion and does not require the source and target performance to be similar. We show convincing reenactment results for videos that we recorded ourselves and for low-quality footage taken from the Internet.
While accurate lip synchronization has been achieved for arbitrary-subject audio-driven talking face generation, the problem of how to efficiently drive the head pose remains. Previous methods rely on pre-estimated structural information such as landmarks and 3D parameters, aiming to generate personalized rhythmic movements. However, the inaccuracy of such estimated information under extreme conditions would lead to degradation problems. In this paper, we propose a clean yet effective framework to generate pose-controllable talking faces. We operate on raw face images, using only a single photo as an identity reference. The key is to modularize audio-visual representations by devising an implicit low-dimension pose code. Substantially, both speech content and head pose information lie in a joint non-identity embedding space. While speech content information can be defined by learning the intrinsic synchronization between audio-visual modalities, we identify that a pose code will be complementarily learned in a modulated convolution-based reconstruction framework. Extensive experiments show that our method generates accurately lip-synced talking faces whose poses are controllable by other videos. Moreover, our model has multiple advanced capabilities including extreme view robustness and talking face frontalization. Code, models, and demo videos are available at https://hangz-nju-cuhk.github.io/projects/PC-AVS.
We present a new application direction named Pareidolia Face Reenactment, which is defined as animating a static illusory face to move in tandem with a human face in the video. For the large differences between pareidolia face reenactment and traditional human face reenactment, two main challenges are introduced, i.e., shape variance and texture variance. In this work, we propose a novel Parametric Unsupervised Reenactment Algorithm to tackle these two challenges. Specifically, we propose to decompose the reenactment into three catenate processes: shape modeling, motion transfer and texture synthesis. With the decomposition, we introduce three crucial components, i.e., Parametric Shape Modeling, Expansionary Motion Transfer and Unsupervised Texture Synthesizer, to overcome the problems brought by the remarkably variances on pareidolia faces. Extensive experiments show the superior performance of our method both qualitatively and quantitatively. Code, model and data are available on our project page.
Face performance capture and reenactment techniques use multiple cameras and sensors, positioned at a distance from the face or mounted on heavy wearable devices. This limits their applications in mobile and outdoor environments. We present EgoFace, a radically new lightweight setup for face performance capture and front-view videorealistic reenactment using a single egocentric RGB camera. Our lightweight setup allows operations in uncontrolled environments, and lends itself to telepresence applications such as video-conferencing from dynamic environments. The input image is projected into a low dimensional latent space of the facial expression parameters. Through careful adversarial training of the parameter-space synthetic rendering, a videorealistic animation is produced. Our problem is challenging as the human visual system is sensitive to the smallest face irregularities that could occur in the final results. This sensitivity is even stronger for video results. Our solution is trained in a pre-processing stage, through a supervised manner without manual annotations. EgoFace captures a wide variety of facial expressions, including mouth movements and asymmetrical expressions. It works under varying illuminations, background, movements, handles people from different ethnicities and can operate in real time.