Do you want to publish a course? Click here

Pure Gravity and Conical Defects

116   0   0.0 ( 0 )
 Added by Scott Collier
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We revisit the spectrum of pure quantum gravity in AdS$_3$. The computation of the torus partition function will -- if computed using a gravitational path integral that includes only smooth saddle points -- lead to a density of states which is not physically sensible, as it has a negative degeneracy of states for some energies and spins. We consider a minimal cure for this non-unitarity of the pure gravity partition function, which involves the inclusion of additional states below the black hole threshold. We propose a geometric interpretation for these extra states: they are conical defects with deficit angle $2pi(1-1/N)$, where $N$ is a positive integer. That only integer values of $N$ should be included can be seen from a modular bootstrap argument, and leads us to propose a modest extension of the set of saddle-point configurations that contribute to the gravitational path integral: one should sum over orbifolds in addition to smooth manifolds. These orbifold states are below the black hole threshold and are regarded as massive particles in AdS, but they are not perturbative states: they are too heavy to form multi-particle bound states. We compute the one-loop determinant for gravitons in these orbifold backgrounds, which confirms that the orbifold states are Virasoro primaries. We compute the gravitational partition function including the sum over these orbifolds and find a finite, modular invariant result; this finiteness involves a delicate cancellation between the infinite tower of orbifold states and an infinite number of instantons associated with $PSL(2,{mathbb Z})$ images.



rate research

Read More

70 - Jani Kastikainen 2020
We study codimension-even conical defects that contain a deficit solid angle around each point along the defect. We show that they lead to a delta function contribution to the Lovelock scalar and we compute the contribution by two methods. We then show that these codimension-even defects appear as Euclidean brane solutions in higher dimensional topological AdS gravity which is Lovelock-Chern-Simons gravity without torsion. The theory possesses a holographic Weyl anomaly that is purely of type-A and proportional to the Lovelock scalar. Using the formula for the defect contribution, we prove a holographic duality between codimension-even defect partition functions and codimension-even brane on-shell actions in Euclidean signature. More specifically, we find that the logarithmic divergences match, because the Lovelock-Chern-Simons action localizes on the brane exactly. We demonstrate the duality explicitly for a spherical defect on the boundary which extends as a codimension-even hyperbolic brane into the bulk. For vanishing brane tension, the geometry is a foliation of Euclidean AdS space that provides a one-parameter generalization of AdS-Rindler space.
We explore the large spin spectrum in two-dimensional conformal field theories with a finite twist gap, using the modular bootstrap in the lightcone limit. By recursively solving the modular crossing equations associated to different $PSL(2,mathbb{Z})$ elements, we identify the universal contribution to the density of large spin states from the vacuum in the dual channel. Our result takes the form of a sum over $PSL(2,mathbb{Z})$ elements, whose leading term generalizes the usual Cardy formula to a wider regime. Rather curiously, the contribution to the density of states from the vacuum becomes negative in a specific limit, which can be canceled by that from a non-vacuum Virasoro primary whose twist is no bigger than $c-1over16$. This suggests a new upper bound of $c-1over 16$ on the twist gap in any $c>1$ compact, unitary conformal field theory with a vacuum, which would in particular imply that pure AdS$_3$ gravity does not exist. We confirm this negative density of states in the pure gravity partition function by Maloney, Witten, and Keller. We generalize our discussion to theories with $mathcal{N}=(1,1)$ supersymmetry, and find similar results.
65 - J. W. Maluf , A. Kneip 1995
The energy density of asymptotically flat gravitational fields can be calculated from a simple expression involving the trace of the torsion tensor. Integration of this energy density over the whole space yields the ADM energy. Such expression can be justified within the framework of the teleparallel equivalent of general relativity, which is an alternative geometrical formulation of Einsteins general relativity. In this paper we apply this energy density to the evaluation of the energy per unit length of a class of conical defects of topological nature, which include disclinations and dislocations (in the terminology of crystallography). Disclinations correspond to cosmic strings, and for a spacetime endowed with only such a defect we obtain precisely the well known expression of energy per unit length. However for a pure spacetime dislocation the total gravitational energy is zero.
We consider pure states in the SYK model. These are given by a simple local condition on the Majorana fermions, evolved over an interval in Euclidean time to project on to low energy states. We find that diagonal correlators are exactly the same as thermal correlators at leading orders in the large $N$ expansion. We also describe off diagonal correlators that decay in time, and are given simply in terms of thermal correlators. We also solved the model numerically for low values of $N$ and noticed that subsystems become typically entangled after an interaction time. In addition, we identified configurations in two dimensional nearly-$AdS_2$ gravity with similar symmetries. These gravity configurations correspond to states with regions behind horizons. The region behind the horizon can be made accessible by modifying the Hamiltonian of the boundary theory using the the knowledge of the particular microstate. The set of microstates in the SYK theory with these properties generates the full Hilbert space.
We study the spectrum of pure massless higher spin theories in $AdS_3$. The light spectrum is given by a tower of massless particles of spin $s=2,cdots,N$ and their multi-particles states. Their contribution to the torus partition function organises into the vacuum character of the ${cal W}_N$ algebra. Modular invariance puts constraints on the heavy spectrum of the theory, and in particular leads to negative norm states, which would be inconsistent with unitarity. This negativity can be cured by including additional light states, below the black hole threshold but whose mass grows with the central charge. We show that these states can be interpreted as conical defects with deficit angle $2pi(1-1/M)$. Unitarity allows the inclusion of such defects into the path integral provided $M geq N$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا