Do you want to publish a course? Click here

A Molecular Approach for Engineering Interfacial Interactions in Magnetic-Topological Insulator Heterostructures

77   0   0.0 ( 0 )
 Added by Roberto Robles
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Controlling interfacial interactions in magnetic/topological insulator heterostructures is a major challenge for the emergence of novel spin-dependent electronic phenomena. As for any rational design of heterostructures that rely on proximity effects, one should ideally retain the overall properties of each component while tuning interactions at the interface. However, in most inorganic interfaces interactions are too strong, consequently perturbing, and even quenching, both the magnetic moment and the topological surface states at each side of the interface. Here we show that these properties can be preserved by using ligand chemistry to tune the interaction of magnetic ions with the surface states. By depositing Co-based porphyrin and phthalocyanine monolayers on the surface of Bi$_2$Te$_3$ thin films, robust interfaces are formed that preserve undoped topological surface states as well as the pristine magnetic moment of the divalent Co ions. The selected ligands allow us to tune the interfacial hybridization within this weak interaction regime. These results, which are in stark contrast with the observed suppression of the surface state at the first quintuple layer of Bi$_2$Se$_3$ induced by the interaction with Co phthalocyanines, demonstrate the capability of planar metal-organic molecules to span interactions from the strong to the weak limit.



rate research

Read More

A topological insulator (TI) interfaced with a magnetic insulator (MI) may host an anomalous Hall effect (AHE), a quantum AHE, and a topological Hall effect (THE). Recent studies, however, suggest that coexisting magnetic phases in TI/MI heterostructures may result in an AHE-associated response that resembles a THE but in fact is not. This article reports a genuine THE in a TI/MI structure that has only one magnetic phase. The structure shows a THE in the temperature range of T=2-3 K and an AHE at T=80-300 K. Over T=3-80 K, the two effects coexist but show opposite temperature dependencies. Control measurements, calculations, and simulations together suggest that the observed THE originates from skyrmions, rather than the coexistence of two AHE responses. The skyrmions are formed due to an interfacial DMI interaction. The DMI strength estimated is substantially higher than that in heavy metal-based systems.
We propose a universal practical approach to realize magnetic second-order topological insulator (SOTI) materials, based on properly breaking the time reversal symmetry in conventional (first-order) topological insulators. The approach works for both three dimensions (3D) and two dimensions (2D), and is particularly suitable for 2D, where it can be achieved by coupling a quantum spin Hall insulator with a magnetic substrate. Using first-principles calculations, we predict bismuthene on EuO(111) surface as the first realistic system for a 2D magnetic SOTI. We explicitly demonstrate the existence of the protected corner states. Benefited from the large spin-orbit coupling and sizable magnetic proximity effect, these corner states are located in a boundary gap $sim 83$ meV, hence can be readily probed in experiment. By controlling the magnetic phase transition, a topological phase transition between a first-order TI and a SOTI can be simultaneously achieved in the system. The effect of symmetry breaking, the connection with filling anomaly, and the experimental detection are discussed.
Non-volatile memory and computing technology rely on efficient read and write of ultra-tiny information carriers that do not wear out. Magnetic skyrmions are emerging as a potential carrier since they are topologically robust nanoscale spin textures that can be manipulated with ultralow current density. To date, most of skyrmions are reported in metallic films, which suffer from additional Ohmic loss and thus high energy dissipation. Therefore, skyrmions in magnetic insulators are of technological importance for low-power information processing applications due to their low damping and the absence of Ohmic loss. Moreover, they attract fundamental interest in studying various magnon-skyrmion interactions11. Skyrmions have been observed in one insulating material Cu2OSeO3 at cryogenic temperatures, where they are stabilized by bulk Dzyaloshinskii-Moriya interaction. Here, we report the observation of magnetic skyrmions that survive above room temperature in magnetic insulator/heavy metal heterostructures, i.e., thulium iron garnet/platinum. The presence of these skyrmions results from the Dzyaloshinskii-Moriya interaction at the interface and is identified by the emergent topological Hall effect. Through tuning the magnetic anisotropy via varying temperature, we observe skyrmions in a large window of external magnetic field and enhanced stability of skyrmions in the easy-plane anisotropy regime. Our results will help create a new platform for insulating skyrmion-based room temperature low dissipation spintronic applications.
We report current-direction dependent or unidirectional magnetoresistance (UMR) in magnetic/nonmagnetic topological insulator (TI) heterostructures, Cr$_x$(Bi$_{1-y}$Sb$_y$)$_{2-x}$Te$_3$/(Bi$_{1-y}$Sb$_y$)$_2$Te$_3$, that is several orders of magnitude larger than in other reported systems. From the magnetic field and temperature dependence, the UMR is identified to originate from the asymmetric scattering of electrons by magnons. In particular, the large magnitude of UMR is an outcome of spin-momentum locking and a small Fermi wavenumber at the surface of TI. In fact, the UMR is maximized around the Dirac point with the minimal Fermi wavenumber.
Topological spintronics aims to exploit the spin-momentum locking in the helical surface states of topological insulators for spin-orbit torque devices. We address a fundamental question that still remains unresolved in this context: does the topological surface state alone produce the largest values of spin-charge conversion efficiency or can the strongly spin-orbit coupled bulk states also contribute significantly? By studying the Fermi level dependence of spin pumping in topological insulator/ferrimagnetic insulator bilayers, we show that the spin Hall conductivity is constant when the Fermi level is tuned across the bulk band gap, consistent with a full bulk band calculation. The results suggest a new perspective, wherein bulk-surface correspondence allows spin-charge conversion to be simultaneously viewed either as coming from the full bulk band, or from spin-momentum locking of the surface state.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا