Do you want to publish a course? Click here

Learning Polynomials of Few Relevant Dimensions

222   0   0.0 ( 0 )
 Added by Sitan Chen
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Polynomial regression is a basic primitive in learning and statistics. In its most basic form the goal is to fit a degree $d$ polynomial to a response variable $y$ in terms of an $n$-dimensional input vector $x$. This is extremely well-studied with many applications and has sample and runtime complexity $Theta(n^d)$. Can one achieve better runtime if the intrinsic dimension of the data is much smaller than the ambient dimension $n$? Concretely, we are given samples $(x,y)$ where $y$ is a degree at most $d$ polynomial in an unknown $r$-dimensional projection (the relevant dimensions) of $x$. This can be seen both as a generalization of phase retrieval and as a special case of learning multi-index models where the link function is an unknown low-degree polynomial. Note that without distributional assumptions, this is at least as hard as junta learning. In this work we consider the important case where the covariates are Gaussian. We give an algorithm that learns the polynomial within accuracy $epsilon$ with sample complexity that is roughly $N = O_{r,d}(n log^2(1/epsilon) (log n)^d)$ and runtime $O_{r,d}(N n^2)$. Prior to our work, no such results were known even for the case of $r=1$. We introduce a new filtered PCA approach to get a warm start for the true subspace and use geodesic SGD to boost to arbitrary accuracy; our techniques may be of independent interest, especially for problems dealing with subspace recovery or analyzing SGD on manifolds.



rate research

Read More

The ability to incrementally learn new classes is crucial to the development of real-world artificial intelligence systems. In this paper, we focus on a challenging but practical few-shot class-incremental learning (FSCIL) problem. FSCIL requires CNN models to incrementally learn new classes from very few labelled samples, without forgetting the previously learned ones. To address this problem, we represent the knowledge using a neural gas (NG) network, which can learn and preserve the topology of the feature manifold formed by different classes. On this basis, we propose the TOpology-Preserving knowledge InCrementer (TOPIC) framework. TOPIC mitigates the forgetting of the old classes by stabilizing NGs topology and improves the representation learning for few-shot new classes by growing and adapting NG to new training samples. Comprehensive experimental results demonstrate that our proposed method significantly outperforms other state-of-the-art class-incremental learning methods on CIFAR100, miniImageNet, and CUB200 datasets.
We study the problem of learning the causal relationships between a set of observed variables in the presence of latents, while minimizing the cost of interventions on the observed variables. We assume access to an undirected graph $G$ on the observed variables whose edges represent either all direct causal relationships or, less restrictively, a superset of causal relationships (identified, e.g., via conditional independence tests or a domain expert). Our goal is to recover the directions of all causal or ancestral relations in $G$, via a minimum cost set of interventions. It is known that constructing an exact minimum cost intervention set for an arbitrary graph $G$ is NP-hard. We further argue that, conditioned on the hardness of approximate graph coloring, no polynomial time algorithm can achieve an approximation factor better than $Theta(log n)$, where $n$ is the number of observed variables in $G$. To overcome this limitation, we introduce a bi-criteria approximation goal that lets us recover the directions of all but $epsilon n^2$ edges in $G$, for some specified error parameter $epsilon > 0$. Under this relaxed goal, we give polynomial time algorithms that achieve intervention cost within a small constant factor of the optimal. Our algorithms combine work on efficient intervention design and the design of low-cost separating set systems, with ideas from the literature on graph property testing.
We study the problem of finding a mapping $f$ from a set of points into the real line, under ordinal triple constraints. An ordinal constraint for a triple of points $(u,v,w)$ asserts that $|f(u)-f(v)|<|f(u)-f(w)|$. We present an approximation algorithm for the dense case of this problem. Given an instance that admits a solution that satisfies $(1-varepsilon)$-fraction of all constraints, our algorithm computes a solution that satisfies $(1-O(varepsilon^{1/8}))$-fraction of all constraints, in time $O(n^7) + (1/varepsilon)^{O(1/varepsilon^{1/8})} n$.
Pretrained language models (LMs) perform well on many tasks even when learning from a few examples, but prior work uses many held-out examples to tune various aspects of learning, such as hyperparameters, training objectives, and natural language templates (prompts). Here, we evaluate the few-shot ability of LMs when such held-out examples are unavailable, a setting we call true few-shot learning. We test two model selection criteria, cross-validation and minimum description length, for choosing LM prompts and hyperparameters in the true few-shot setting. On average, both marginally outperform random selection and greatly underperform selection based on held-out examples. Moreover, selection criteria often prefer models that perform significantly worse than randomly-selected ones. We find similar results even when taking into account our uncertainty in a models true performance during selection, as well as when varying the amount of computation and number of examples used for selection. Overall, our findings suggest that prior work significantly overestimated the true few-shot ability of LMs given the difficulty of few-shot model selection.
We give a new approach to the dictionary learning (also known as sparse coding) problem of recovering an unknown $ntimes m$ matrix $A$ (for $m geq n$) from examples of the form [ y = Ax + e, ] where $x$ is a random vector in $mathbb R^m$ with at most $tau m$ nonzero coordinates, and $e$ is a random noise vector in $mathbb R^n$ with bounded magnitude. For the case $m=O(n)$, our algorithm recovers every column of $A$ within arbitrarily good constant accuracy in time $m^{O(log m/log(tau^{-1}))}$, in particular achieving polynomial time if $tau = m^{-delta}$ for any $delta>0$, and time $m^{O(log m)}$ if $tau$ is (a sufficiently small) constant. Prior algorithms with comparable assumptions on the distribution required the vector $x$ to be much sparser---at most $sqrt{n}$ nonzero coordinates---and there were intrinsic barriers preventing these algorithms from applying for denser $x$. We achieve this by designing an algorithm for noisy tensor decomposition that can recover, under quite general conditions, an approximate rank-one decomposition of a tensor $T$, given access to a tensor $T$ that is $tau$-close to $T$ in the spectral norm (when considered as a matrix). To our knowledge, this is the first algorithm for tensor decomposition that works in the constant spectral-norm noise regime, where there is no guarantee that the local optima of $T$ and $T$ have similar structures. Our algorithm is based on a novel approach to using and analyzing the Sum of Squares semidefinite programming hierarchy (Parrilo 2000, Lasserre 2001), and it can be viewed as an indication of the utility of this very general and powerful tool for unsupervised learning problems.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا