Do you want to publish a course? Click here

Effect of mediated interactions on a Hubbard chain in mixed-dimensional fermionic cold atoms

83   0   0.0 ( 0 )
 Added by Junichi Okamoto
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Cold atom experiments can now realize mixtures where different components move in different spatial dimensions. We investigate a fermion mixture where one species is constrained to move along a one-dimensional lattice embedded in a two-dimensional lattice populated by another species of fermions, and where all bare interactions are contact interactions. By focusing on the one-dimensional fermions, we map this problem onto a model of fermions with non-local interactions on a chain. The effective interaction is mediated by the two-dimensional fermions and is both attractive and retarded, the form of which can be varied by changing the density of the two-dimensional fermions. By using the functional renormalization group in the weak-coupling and adiabatic limit, we show that the one-dimensional fermions can be controlled to be in various density-wave, or spin-singlet or triplet superconducting phases.



rate research

Read More

We report on the deterministic preparation of antiferromagnetic Heisenberg spin chains consisting of up to four fermionic atoms in a one-dimensional trap. These chains are stabilized by strong repulsive interactions between the two spin components without the need for an external periodic potential. We independently characterize the spin configuration of the chains by measuring the spin orientation of the outermost particle in the trap and by projecting the spatial wave function of one spin component on single-particle trap levels. Our results are in good agreement with a spin-chain model for fermionized particles and with numerically exact diagonalizations of the full few-fermion system.
453 - Edina Szirmai 2013
We study the effect of the coupling between the electronic ground state of high spin alkaline-earth fermionic atoms and their metastable optically excited state, when the system is confined in a one-dimensional chain, and show that the system provides a possible realization of a finite momentum pairing (Fulde-Ferrell-Larkin-Ovchinnikov-like) state without spin- or bare mass imbalance. We determine the $beta$-functions of the renormalization group trajectories for general spin and analyze the structure of the possible gapped and gapless states in the hydrodynamic limit. Due to the SU(N) symmetry in the spin space, complete mode separation can not be observed even in the fully gapless 2N-component Luttinger liquid state. Contrary, 4 velocities characterize the system. We solve the renormalization group equations for spin-9/2 strontium-87 isotope and analyze in detail its phase diagram. The fully gapless Luttinger liquid state does not stabilize in the two-orbital system of the $^{87}$Sr atoms, instead, different gapped non-Gaussian fixed points are identified either with dominant density or superconducting fluctuations. The superconducting states are stable in a nontrivial shaped region in the parameter space as a consequence of the coupling between the two electronic states.
We formulate a Bardeen-Cooper-Schriffer (BCS) theory of quasiparticles in a degenerate Fermi gas strongly coupled to photons in a optical cavity. The elementary photonic excitations of the system are cavity polaritons, which consist of a cavity photon and an excitation of an atom within the Fermi sea. The excitation of the atom out of the Fermi sea leaves behind a hole, which together results in a loosely bound Cooper pair, allowing for the system to be written by a BCS wavefunction. As the density of the excitations is increased, the excited atom and hole become more strongly bound, crossing over into the molecular regime. This thus realizes an alternative BCS to BEC crossover scenario, where the participating species are quasiparticle excitations in a Fermi sea consisting of excited atoms and holes.
We report on the production of a novel cold mixture of fermionic $^{53}$Cr and $^{6}$Li atoms delivered by two Zeeman-slowed atomic beams and collected within a magneto-optical trap (MOT). For lithium, we obtain clouds of up to $4 ,10^8$ atoms at temperatures of about $500,mu$K. A gray optical molasses stage allows us to decrease the gas temperature down to $45(5),mu$K. For chromium, we obtain MOTs comprising up to $1.5, 10^6$ atoms. The availability of magnetically trappable metastable $D$-states, from which $P$-state atoms can radiatively decay onto, enables to accumulate into the MOT quadrupole samples of up to $10^7$ $^{53}$Cr atoms. After repumping $D$-state atoms back into the cooling cycle, a final cooling stage decreases the chromium temperature down to $145(5),mu$K. While the presence of a lithium MOT decreases the lifetime of magnetically trapped $^{53}$Cr atoms, we obtain, within a 5 seconds duty cycle, samples of about $4, 10^6$ chromium and $1.5,10^8$ lithium atoms. Our work provides a crucial step towards the production of degenerate Cr-Li Fermi mixtures.
From flow without dissipation of energy to the formation of vortices when placed within a rotating container, the superfluid state of matter has proven to be a very interesting physical phenomenon. Here we present the key mechanisms behind superfluidity in fermionic systems and apply our understanding to an exotic system found deep within the universe -- the superfluid found deep within a neutron star. A defining trait of a superfluid is the pairing gap, which the cooling curves of neutron stars depend on. The extreme conditions surrounding a neutron star prevent us from directly probing the superfluids properties, however, we can experimentally realize conditions resembling the interior through the use of cold atoms prepared in a laboratory and simulated on a computer. Experimentalists are becoming increasingly adept at realizing cold atomic systems in the lab that mimic the behavior of neutron stars and superconductors. In their turn, computational physicists are leveraging the power of supercomputers to simulate interacting atomic systems with unprecedented accuracy. This paper is intended to provide a pedagogical introduction to the underlying concepts and the possibility of using cold atoms as a tool that can help us make significant strides towards understanding exotic physical systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا