Do you want to publish a course? Click here

Probing bulk topological invariants using leaky photonic lattices

67   0   0.0 ( 0 )
 Added by Daniel Leykam
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Topological invariants characterising filled Bloch bands attract enormous interest, underpinning electronic topological insulators and analogous artificial lattices for Bose-Einstein condensates, photons, and acoustic waves. In the latter bosonic systems there is no Fermi exclusion principle to enforce uniform band filling, which makes measurement of their bulk topological invariants challenging. Here we show how to achieve controllable filling of bosonic bands using leaky photonic lattices. Leaky photonic lattices host transitions between bound and radiative modes at a critical energy, which plays a role analogous to the electronic Fermi level. Tuning this effective Fermi level into a band gap results in disorder-robust dynamical quantization of bulk topological invariants such as the Chern number. Our findings establish leaky lattices as a novel and highly flexible platform for exploring topological and non-Hermitian wave physics.



rate research

Read More

We proposed a group-theory method to calculate topological invariant in bi-isotropic photonic crystals invariant under crystallographic point group symmetries. Spin Chern number has been evaluated by the eigenvalues of rotation operators at high symmetry k-points after the pseudo-spin polarized fields are retrieved. Topological characters of photonic edge states and photonic band gaps can be well predicted by total spin Chern number. Nontrivial phase transition is found in large magnetoelectric coupling due to the jump of total spin Chern number. Light transport is also issued at the {epsilon}/{mu} mismatching boundary between air and the bi-isotropic photonic crystal. This finding presents the relationship between group symmetry and photonic topological systems, which enables the design of photonic nontrivial states in a rational manner.
We analyze the transport of light in the bulk and at the edge of photonic Lieb lattices, whose unique feature is the existence of a flat band representing stationary states in the middle of the band structure that can form localized bulk states. We find that transport in bulk Lieb lattices is significantly affected by the particular excitation site within the unit cell, due to overlap with the flat band states. Additionally, we demonstrate the existence of new edge states in anisotropic Lieb lattices. These states arise due to a virtual defect at the lattice edges and are not described by the standard tight-binding model.
The recent realization of photonic topological insulators has brought the discovery of fundamentally new states of light and revolutionary applications such as non-reciprocal devices for photonic diodes and robust waveguides for light routing. The spatially distinguished layer pseudospin has attracted attention in two-dimensional electronic materials. Here we report layered photonic topological insulators based on all-dielectric bilayer photonic crystal slabs. The introduction of layer pseudospin offers more dispersion engineering capability, leading to the layer-polarized and layer-mixed photonic topological insulators. Their phase transition is demonstrated with a model Hamiltonian by considering the nonzero interlayer coupling. Layer-direction locking behavior is found in layer-polarized photonic topological insulators. High transmission is preserved in the bilayer domain wall between two layer-mixed photonic topological insulators, even when a large defect is introduced. Layered photonic topological insulators not only offer a route towards the observation of richer nontrivial phases, but also open a way for device applications in integrated photonics and information processing by using the additional layer pseudospin.
Quadrupole topological phases, exhibiting protected boundary states that are themselves topological insulators of lower dimensions, have recently been of great interest. Extensions of these ideas from current tight binding models to continuum theories for realistic materials require the identification of quantized invariants describing the bulk quadrupole order. Here we identify the analog of quadrupole order in Maxwells equations for a photonic crystal (PhC) and identify quadrupole topological photonic crystals formed through a band inversion process. Unlike prior studies relying on threaded flux, our quadrupole moment is quantized purely by crystalline symmetries, which we confirm using three independent methods: analysis of symmetry eigenvalues, numerical calculations of the nested Wannier bands, and the expectation value of the quadrupole operator. Furthermore, through the bulk-edge correspondence of Wannier bands, we reveal the boundary manifestations of nontrivial quadrupole phases as quantized polarizations at edges and bound states at corners. Finally, we relate the nontrivial corner states to the emergent phenomena of quantized fractional corner charges and a filling anomaly as first predicted in electronic systems. Our work paves the way to further explore higher-order topological phases in nanophotonic systems and our method of inducing quadrupole phase transitions is also applicable to other wave systems, such as electrons, phonons and polaritons.
We establish experimentally a photonic super-honeycomb lattice (sHCL) by use of a cw-laser writing technique, and thereby demonstrate two distinct flatband line states that manifest as noncontractible-loop-states in an infinite flatband lattice. These localized states (straight and zigzag lines) observed in the sHCL with tailored boundaries cannot be obtained by superposition of conventional compact localized states because they represent a new topological entity in flatband systems. In fact, the zigzag-line states, unique to the sHCL, are in contradistinction with those previously observed in the Kagome and Lieb lattices. Their momentum-space spectrum emerges in the high-order Brillouin zone where the flat band touches the dispersive bands, revealing the characteristic of topologically protected bandcrossing. Our experimental results are corroborated by numerical simulations based on the coupled mode theory. This work may provide insight to Dirac like 2D materials beyond graphene.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا