Do you want to publish a course? Click here

Attenuation of Several Common Building Materials in Millimeter-Wave Frequency Bands: 28, 73 and 91 GHz

98   0   0.0 ( 0 )
 Added by Nozhan Hosseini
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Future cellular systems will make use of millimeter wave (mmWave) frequency bands. Many users in these bands are located indoors, i.e., inside buildings, homes, and offices. Typical building material attenuations in these high frequency ranges are of interest for link budget calculations. In this paper, we report on a collaborative measurement campaign to find the attenuation of several typical building materials in three potential mmWave bands (28, 73, 91 GHz). Using directional antennas, we took multiple measurements at multiple locations using narrow-band and wide-band signals, and averaged out residual small-scale fading effects. Materials include clear glass, drywall (plasterboard), plywood, acoustic ceiling tile, and cinder blocks. Specific attenuations range from approximately 0.5 dB/cm for ceiling tile at 28 GHz to approximately 19 dB/cm for clear glass at 91 GHz.



rate research

Read More

176 - Li You , Xu Chen , Xiaohang Song 2020
Mobility and blockage are two critical challenges in wireless transmission over millimeter-wave (mmWave) and Terahertz (THz) bands. In this paper, we investigate network massive multiple-input multiple-output (MIMO) transmission for mmWave/THz downlink in the presence of mobility and blockage. Considering the mmWave/THz propagation characteristics, we first propose to apply per-beam synchronization for network massive MIMO to mitigate the channel Doppler and delay dispersion effects. Accordingly, we establish a transmission model. We then investigate network massive MIMO downlink transmission strategies with only the statistical channel state information (CSI) available at the base stations (BSs), formulating the strategy design problem as an optimization problem to maximize the network sum-rate. We show that the beam domain is favorable to perform transmission, and demonstrate that BSs can work individually when sending signals to user terminals. Based on these insights, the network massive MIMO precoding design is reduced to a network sum-rate maximization problem with respect to beam domain power allocation. By exploiting the sequential optimization method and random matrix theory, an iterative algorithm with guaranteed convergence performance is further proposed for beam domain power allocation. Numerical results reveal that the proposed network massive MIMO transmission approach with the statistical CSI can effectively alleviate the blockage effects and provide mobility enhancement over mmWave and THz bands.
Reconfigurable intelligent surfaces (RISs) provide an interface between the electromagnetic world of the wireless propagation environment and the digital world of information science. Simple yet sufficiently accurate path loss models for RISs are an important basis for theoretical analysis and optimization of RIS-assisted wireless communication systems. In this paper, we refine our previously proposed free-space path loss model for RISs to make it simpler, more applicable, and easier to use. In the proposed path loss model, the impact of the radiation patterns of the antennas and unit cells of the RIS is formulated in terms of an angle-dependent loss factor. The refined model gives more accurate estimates of the path loss of RISs comprised of unit cells with a deep sub-wavelength size. The free-space path loss model of the sub-channel provided by a single unit cell is also explicitly provided. In addition, two fabricated RISs, which are designed to operate in the millimeter-wave (mmWave) band, are utilized to carry out a measurement campaign in order to characterize and validate the proposed path loss model for RIS-assisted wireless communications. The measurement results corroborate the proposed analytical model. The proposed refined path loss model for RISs reveals that the reflecting capability of a single unit cell is proportional to its physical aperture and to an angle-dependent factor. In particular, the far-field beamforming gain provided by an RIS is mainly determined by the total area of the surface and by the angles of incidence and reflection.
In the upcoming 5G communication, the millimeter-wave (mmWave) technology will play an important role due to its large bandwidth and high data rate. However, mmWave frequencies have higher free-space path loss (FSPL) in line-of-sight (LOS) propagation compared to the currently used sub-6 GHz frequencies. What is more, in non-line-of-sight (NLOS) propagation, the attenuation of mmWave is larger compared to the lower frequencies, which can seriously degrade the performance. It is therefore necessary to investigate mmWave propagation characteristics for a given deployment scenario to understand coverage and rate performance for that environment. In this paper, we focus on 28 GHz wideband mmWave signal propagation characteristics at Johnston Regional Airport (JNX), a local airport near Raleigh, NC. To collect data, we use an NI PXI based channel sounder at 28 GHz for indoor, outdoor, and indoor-to-outdoor scenarios. Results on LOS propagation, reflection, penetration, signal coverage, and multi-path components (MPCs) show a lower indoor FSPL, a richer scattering, and a better coverage compared to outdoor. We also observe high indoor-to-outdoor propagation losses.
Due to heavy congestion in lower frequency bands, engineers are looking for new frequency bands to support new services that require higher data rates, which in turn needs broader bandwidths. To meet this requirement, extremely high frequency (EHF), particularly Q (36 to 46 GHz) and V (46 to 56 GHz) bands, is the best viable solution because of its complete availability. The most serious challenge the EHF band poses is the attenuation caused by rain. This paper investigates the effect of the rain on Q and V bands performances in Bangladeshi climatic conditions. The rain attenuations of the two bands are predicted for the four main regions of Bangladesh using ITU rain attenuation model. The measured rain statistics is used for this prediction. It is observed that the attenuation due to rain in the Q/V band reaches up to 150 dB which is much higher than that of the currently used Ka band. The variability of the rain attenuation is also investigated over different sessions of Bangladesh. The attenuation varies from 40 dB to 170 dB depending on the months. Finally, the amount of rain fade required to compensate the high rain attenuation is also predicted for different elevation angles.
We use the Discrete Element Method (DEM) to understand the underlying attenuation mechanism in granular media, with special applicability to the measurements of the so-called effective mass developed earlier. We consider that the particles interact via Hertz-Mindlin elastic contact forces and that the damping is describable as a force proportional to the velocity difference of contacting grains. We determine the behavior of the complex-valued normal mode frequencies using 1) DEM, 2) direct diagonalization of the relevant matrix, and 3) a numerical search for the zeros of the relevant determinant. All three methods are in strong agreement with each other. The real and the imaginary parts of each normal mode frequency characterize the elastic and the dissipative properties, respectively, of the granular medium. We demonstrate that, as the interparticle damping, $xi$, increases, the normal modes exhibit nearly circular trajectories in the complex frequency plane and that for a given value of $xi$ they all lie on or near a circle of radius $R$ centered on the point $-iR$ in the complex plane, where $Rpropto 1/xi$. We show that each normal mode becomes critically damped at a value of the damping parameter $xi approx 1/omega_n^0$, where $omega_n^0$ is the (real-valued) frequency when there is no damping. The strong indication is that these conclusions carry over to the properties of real granular media whose dissipation is dominated by the relative motion of contacting grains. For example, compressional or shear waves in unconsolidated dry sediments can be expected to become overdamped beyond a critical frequency, depending upon the strength of the intergranular damping constant.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا