Do you want to publish a course? Click here

Frequency-dependent attenuation and elasticity in unconsolidated earth materials: effect of damping

497   0   0.0 ( 0 )
 Added by Hernan A. Makse
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use the Discrete Element Method (DEM) to understand the underlying attenuation mechanism in granular media, with special applicability to the measurements of the so-called effective mass developed earlier. We consider that the particles interact via Hertz-Mindlin elastic contact forces and that the damping is describable as a force proportional to the velocity difference of contacting grains. We determine the behavior of the complex-valued normal mode frequencies using 1) DEM, 2) direct diagonalization of the relevant matrix, and 3) a numerical search for the zeros of the relevant determinant. All three methods are in strong agreement with each other. The real and the imaginary parts of each normal mode frequency characterize the elastic and the dissipative properties, respectively, of the granular medium. We demonstrate that, as the interparticle damping, $xi$, increases, the normal modes exhibit nearly circular trajectories in the complex frequency plane and that for a given value of $xi$ they all lie on or near a circle of radius $R$ centered on the point $-iR$ in the complex plane, where $Rpropto 1/xi$. We show that each normal mode becomes critically damped at a value of the damping parameter $xi approx 1/omega_n^0$, where $omega_n^0$ is the (real-valued) frequency when there is no damping. The strong indication is that these conclusions carry over to the properties of real granular media whose dissipation is dominated by the relative motion of contacting grains. For example, compressional or shear waves in unconsolidated dry sediments can be expected to become overdamped beyond a critical frequency, depending upon the strength of the intergranular damping constant.



rate research

Read More

Shear banding and stick-slip instabilities have been long observed in sheared granular materials. Yet, their microscopic underpinnings, interdependencies and variability under different loading conditions have not been fully explored. Here, we use a non-equilibrium thermodynamics model, the Shear Transformation Zone theory, to investigate the dynamics of strain localization and its connection to stability of sliding in sheared, dry, granular materials. We consider frictional and frictionless grains as well as presence and absence of acoustic vibrations. Our results suggest that at low and intermediate strain rates, persistent shear bands develop only in the absence of vibrations. Vibrations tend to fluidize the granular network and de-localize slip at these rates. Stick-slip is only observed for frictional grains and it is confined to the shear band. At high strain rates, stick-slip disappears and the different systems exhibit similar stress-slip response. Changing the vibration intensity, duration or time of application alters the system response and may cause long-lasting rheological changes. We analyse these observations in terms of possible transitions between rate strengthening and rate weakening response facilitated by a competition between shear induced dilation and vibration induced compaction. We discuss the implications of our results on dynamic triggering, quiescence and strength evolution in gouge filled fault zones.
552 - Xavier Jacob 2019
Experiments with acoustic waves guided along the mechanically free surface of an unconsolidated granular packed structure provide information on the elasticity of granular media at very low pressures that are naturally controlled by the gravitational acceleration and the depth beneath the surface. Comparison of the determined dispersion relations for guided surface acoustic modes with a theoretical model reveals the dependencies of the elastic moduli of the granular medium on pressure. The experiments confirm recent theoretical predictions that relaxation of the disordered granular packing through non-affine motion leads to a peculiar scaling of shear rigidity with pressure near the jamming transition corresponding to zero pressure. Unexpectedly, and in disagreement with the most of the available theories, the bulk modulus depends on pressure in a very similar way to the shear modulus.
Coupling between axial and torsional degrees of freedom often modifies the conformation and expression of natural and synthetic filamentous aggregates. Recent studies on chiral single-walled carbon nanotubes and B-DNA reveal a reversal in the sign of the twist-stretch coupling at large strains. The similarity in the response in these two distinct supramolecular assemblies and at high strains suggests a fundamental, chirality dependent non-linear elastic behaviour. Here, we seek the link between the microscopic origin of the non-linearities and the effective twist-stretch coupling using energy based theoretical frameworks and model simulations. Our analysis reveals a sensitive interplay between the deformation energetics and the sign of the coupling, highlighting robust design principles that determine both the sign and extent of these couplings. These design principles have been already exploited by Nature to dynamically engineer such couplings, and have broad implications in mechanically coupled actuation, propulsion and transport in biology and technology.
In this work, we present a characterization of phase configuration in water-saturated sintered glass bead samples after oil injection, through the analysis of time-dependent diffusion coefficients obtained from sets of one-dimensional pulsed field gradient nuclear magnetic resonance (PFG NMR) measurements, pre and post drainage. Estimates of samples surface-to-volume ratio and permeability from pre drainage PFG measurements in a water-saturated sample were compared with analytical and reported values, respectively, and a fair agreement was found in both cases. Short-time analysis of diffusion coefficients extracted from PFG measurements was used to quantify the increase in surface-to-volume ratio probed by the wetting phase after drainage. Analysis of water and oil diffusion coefficients from post drainage PFG experiments were carried out using a bi-Gaussian model, and two distinct scenarios were considered to describe fluids conformation within pores. For the case where non-wetting phase was considered to exhibit a poorly connected geometry, an analysis assuming the formation of oi-in-water droplets within pores was performed, and a Gaussian distribution of droplets radii was determined.
We prove that the symmetry group of an elasticity tensor is equal to the symmetry group of the corresponding Christoffel matrix.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا