Do you want to publish a course? Click here

CS-AF: A Cost-sensitive Multi-classifier Active Fusion Framework for Skin Lesion Classification

79   0   0.0 ( 0 )
 Added by Di Zhuang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Convolutional neural networks (CNNs) have achieved the state-of-the-art performance in skin lesion analysis. Compared with single CNN classifier, combining the results of multiple classifiers via fusion approaches shows to be more effective and robust. Since the skin lesion datasets are usually limited and statistically biased, while designing an effective fusion approach, it is important to consider not only the performance of each classifier on the training/validation dataset, but also the relative discriminative power (e.g., confidence) of each classifier regarding an individual sample in the testing phase, which calls for an active fusion approach. Furthermore, in skin lesion analysis, the data of certain classes (e.g., the benign lesions) is usually abundant making them an over-represented majority, while the data of some other classes (e.g., the cancerous lesions) is deficient, making them an underrepresented minority. It is more crucial to precisely identify the samples from an underrepresented (i.e., in terms of the amount of data) but more important minority class (e.g., certain cancerous lesion). In other words, misclassifying a more severe lesion to a benign or less severe lesion should have relative more cost (e.g., money, time and even lives). To address such challenges, we present CS-AF, a cost-sensitive multi-classifier active fusion framework for skin lesion classification. In the experimental evaluation, we prepared 96 base classifiers (of 12 CNN architectures) on the ISIC research datasets. Our experimental results show that our framework consistently outperforms the static fusion competitors.



rate research

Read More

Early detection and segmentation of skin lesions is crucial for timely diagnosis and treatment, necessary to improve the survival rate of patients. However, manual delineation is time consuming and subject to intra- and inter-observer variations among dermatologists. This underlines the need for an accurate and automatic approach to skin lesion segmentation. To tackle this issue, we propose a multi-task convolutional neural network (CNN) based, joint detection and segmentation framework, designed to initially localize the lesion and subsequently, segment it. A `Faster region-based convolutional neural network (Faster-RCNN) which comprises a region proposal network (RPN), is used to generate bounding boxes/region proposals, for lesion localization in each image. The proposed regions are subsequently refined using a softmax classifier and a bounding-box regressor. The refined bounding boxes are finally cropped and segmented using `SkinNet, a modified version of U-Net. We trained and evaluated the performance of our network, using the ISBI 2017 challenge and the PH2 datasets, and compared it with the state-of-the-art, using the official test data released as part of the challenge for the former. Our approach outperformed others in terms of Dice coefficients ($>0.93$), Jaccard index ($>0.88$), accuracy ($>0.96$) and sensitivity ($>0.95$), across five-fold cross validation experiments.
We design an active learning algorithm for cost-sensitive multiclass classification: problems where different errors have different costs. Our algorithm, COAL, makes predictions by regressing to each labels cost and predicting the smallest. On a new example, it uses a set of regressors that perform well on past data to estimate possible costs for each label. It queries only the labels that could be the best, ignoring the sure losers. We prove COAL can be efficiently implemented for any regression family that admits squared loss optimization; it also enjoys strong guarantees with respect to predictive performance and labeling effort. We empirically compare COAL to passive learning and several active learning baselines, showing significant improvements in labeling effort and test cost on real-world datasets.
There has been a steady increase in the incidence of skin cancer worldwide, with a high rate of mortality. Early detection and segmentation of skin lesions are crucial for timely diagnosis and treatment, necessary to improve the survival rate of patients. However, skin lesion segmentation is a challenging task due to the low contrast of lesions and their high similarity in terms of appearance, to healthy tissue. This underlines the need for an accurate and automatic approach for skin lesion segmentation. To tackle this issue, we propose a convolutional neural network (CNN) called SkinNet. The proposed CNN is a modified version of U-Net. We compared the performance of our approach with other state-of-the-art techniques, using the ISBI 2017 challenge dataset. Our approach outperformed the others in terms of the Dice coefficient, Jaccard index and sensitivity, evaluated on the held-out challenge test data set, across 5-fold cross validation experiments. SkinNet achieved an average value of 85.10, 76.67 and 93.0%, for the DC, JI, and SE, respectively.
Deep learning for clinical applications is subject to stringent performance requirements, which raises a need for large labeled datasets. However, the enormous cost of labeling medical data makes this challenging. In this paper, we build a cost-sensitive active learning system for the problem of intracranial hemorrhage detection and segmentation on head computed tomography (CT). We show that our ensemble method compares favorably with the state-of-the-art, while running faster and using less memory. Moreover, our experiments are done using a substantially larger dataset than earlier papers on this topic. Since the labeling time could vary tremendously across examples, we model the labeling time and optimize the return on investment. We validate this idea by core-set selection on our large labeled dataset and by growing it with data from the wild.
Ultrasound (US) is a non-invasive yet effective medical diagnostic imaging technique for the COVID-19 global pandemic. However, due to complex feature behaviors and expensive annotations of US images, it is difficult to apply Artificial Intelligence (AI) assisting approaches for lungs multi-symptom (multi-label) classification. To overcome these difficulties, we propose a novel semi-supervised Two-Stream Active Learning (TSAL) method to model complicated features and reduce labeling costs in an iterative procedure. The core component of TSAL is the multi-label learning mechanism, in which label correlations information is used to design multi-label margin (MLM) strategy and confidence validation for automatically selecting informative samples and confident labels. On this basis, a multi-symptom multi-label (MSML) classification network is proposed to learn discriminative features of lung symptoms, and a human-machine interaction is exploited to confirm the final annotations that are used to fine-tune MSML with progressively labeled data. Moreover, a novel lung US dataset named COVID19-LUSMS is built, currently containing 71 clinical patients with 6,836 images sampled from 678 videos. Experimental evaluations show that TSAL using only 20% data can achieve superior performance to the baseline and the state-of-the-art. Qualitatively, visualization of both attention map and sample distribution confirms the good consistency with the clinic knowledge.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا