No Arabic abstract
Spin-dependent transport at heavy metal/magnetic insulator interfaces is at the origin of many phenomena at the forefront of spintronics research. A proper quantification of the different interfacial spin conductances is crucial for many applications. Here, we report the first measurement of the spin Hall magnetoresistance (SMR) of Pt on a purely ferromagnetic insulator (EuS). We perform SMR measurements in a wide range of temperatures and fit the results by using a microscopic model. From this fitting procedure we obtain the temperature dependence of the spin conductances ($G_s$, $G_r$ and $G_i$), disentangling the contribution of field-like torque ($G_i$), damping-like torque ($G_r$), and spin-flip scattering ($G_s$). An interfacial exchange field of the order of 1 meV acting upon the conduction electrons of Pt can be estimated from $G_i$, which is at least three times larger than $G_r$ below the Curie temperature. Our work provides an easy method to quantify this interfacial spin-splitting field, which play a key role in emerging fields such as superconducting spintronics and caloritronics, and topological quantum computation.
At the interface between a nonmagnetic metal (NM) and a ferromagnetic insulator (FI) spin current can interact with the magnetization, leading to a modulation of the spin current. The interfacial exchange field at these FI-NM interfaces can be probed by placing the interface in contact with the spin transport channel of a lateral spin valve (LSV) device and observing additional spin relaxation processes. We study interfacial exchange field in lateral spin valve devices where Cu spin transport channel is in proximity with ferromagnetic insulator EuS (EuS-LSV) and yttrium iron garnet Y$_3$Fe$_5$O$_{12}$ (YIG-LSV). The spin signals were compared with reference lateral spin valve devices fabricated on nonmagnetic Si/SiO$_2$ substrate with MgO or AlO$_x$ capping. The nonlocal spin valve signal is about 4 and 6 times lower in the EuS-LSV and YIG-LSV, respectively. The suppression in the spin signal has been attributed to enhanced surface spin-flip probability at the Cu-EuS (or Cu-YIG) interface due to interfacial spin-orbit field. Besides spin signal suppression we also found widely observed low temperature peak in the spin signal at $T sim$30 K is shifted to higher temperature in the case of devices in contact with EuS or YIG. Temperature dependence of spin signal for different injector-detector distances reveal fluctuating exchange field at these interfaces cause additional spin decoherence which limit spin relaxation time in addition to conventional sources of spin relaxation. Our results show that temperature dependent measurement with pure spin current can be used to probe interfacial exchange field at the ferromagnetic insulator-nonmagnetic metal interface.
We experimentally investigate and quantitatively analyze the spin Hall magnetoresistance effect in ferromagnetic insulator/platinum and ferromagnetic insulator/nonferromagnetic metal/platinum hybrid structures. For the ferromagnetic insulator we use either yttrium iron garnet, nickel ferrite or magnetite and for the nonferromagnet copper or gold. The spin Hall magnetoresistance effect is theoretically ascribed to the combined action of spin Hall and inverse spin Hall effect in the platinum metal top layer. It therefore should characteristically depend upon the orientation of the magnetization in the adjacent ferromagnet, and prevail even if an additional, nonferromagnetic metal layer is inserted between Pt and the ferromagnet. Our experimental data corroborate these theoretical conjectures. Using the spin Hall magnetoresistance theory to analyze our data, we extract the spin Hall angle and the spin diffusion length in platinum. For a spin mixing conductance of $4times10^{14};mathrm{Omega^{-1}m^{-2}}$ we obtain a spin Hall angle of $0.11pm0.08$ and a spin diffusion length of $(1.5pm0.5);mathrm{nm}$ for Pt in our thin film samples.
We observe an unusual behavior of the spin Hall magnetoresistance (SMR) measured in a Pt ultra-thin film deposited on a ferromagnetic insulator, which is a tensile-strained LaCoO3 (LCO) thin film with the Curie temperature Tc=85K. The SMR displays a strong magnetic-field dependence below Tc, with the SMR amplitude continuing to increase (linearly) with increasing the field far beyond the saturation value of the ferromagnet. The SMR amplitude decreases gradually with raising the temperature across Tc and remains measurable even above Tc. Moreover, no hysteresis is observed in the field dependence of the SMR. These results indicate that a novel low-dimensional magnetic system forms on the surface of LCO and that the Pt/LCO interface decouples magnetically from the rest of the LCO thin film. To explain the experiment, we revisit the derivation of the SMR corrections and relate the spin-mixing conductances to the microscopic quantities describing the magnetism at the interface. Our results can be used as a technique to probe quantum magnetism on the surface of a magnetic insulator.
Ferromagnetic (FM)/heavy metal (HM) nanostructures can be used for the magnetic state readout in the proposed magneto-electric spin-orbit logic by locally injecting a spin-polarized current and measure the spin-to-charge conversion via the spin Hall effect. However, this local configuration is prone to spurious signals. In this work, we address spurious Hall effects that can contaminate the spin Hall signal in these FM/HM T-shaped nanostructures. The most pronounced Hall effects in our Co50Fe50/Pt nanostructures are the planar Hall effect and the anomalous Hall effect generated in the FM nanowire. We find that the planar Hall effect, induced by misalignment between magnetization and current direction in the FM wire, is manifested as a shift in the measured baseline resistance, but does not alter the spin Hall signal. In contrast, the anomalous Hall effect, arising from the charge current distribution within the FM, adds to the spin Hall signal. However, the effect can be made insignificant by minimizing the shunting effect via proper design of the device. We conclude that local spin injection in FM/HM nanostructures is a suitable tool for measuring spin Hall signals and, therefore, a valid method for magnetic state readout in prospective spin-based logic.
The Dirac electrons occupying the surface states (SSs) of topological insulators (TIs) have been predicted to exhibit many exciting magneto-transport phenomena. Here we report on the first experimental observation of an unconventional planar Hall effect (PHE) and an electrically gate-tunable hysteretic planar magnetoresistance (PMR) in EuS/TI heterostructures, in which EuS is a ferromagnetic insulator (FMI) with an in-plane magnetization. In such exchange-coupled FMI/TI heterostructures, we find a significant (suppressed) PHE when the in-plane magnetic field is parallel (perpendicular) to the electric current. This behavior differs from previous observations of the PHE in ferromagnets and semiconductors. Furthermore, as the thickness of the 3D TI films is reduced into the 2D limit, in which the Dirac SSs develop a hybridization gap, we find a suppression of the PHE around the charge neutral point indicating the vital role of Dirac SSs in this phenomenon. To explain our findings, we outline a symmetry argument that excludes linear-Hall mechanisms and suggest two possible non-linear Hall mechanisms that can account for all the essential qualitative features in our observations.