Do you want to publish a course? Click here

Persistent anti-correlations in Brownian dynamics simulations of dense colloidal suspensions revealed by noise suppression

109   0   0.0 ( 0 )
 Added by Suvendu Mandal
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Transport properties of a hard-sphere colloidal fluid are investigated by Brownian dynamics simulations. We implement a novel algorithm for the time-dependent velocity-autocorrelation function (VACF) essentially eliminating the noise of the bare random motion. The measured VACF reveals persistent anti-correlations manifested by a negative algebraic power-law tail $t^{-5/2}$ at all densities. At small packing fractions, the simulations fully agree with the analytic low-density prediction, yet the amplitude of the tail becomes dramatically suppressed as the packing fraction is increased. The mode-coupling theory of the glass transition provides a qualitative explanation for the strong variation in terms of the static compressibility as well as the slowing down of the structural relaxation.



rate research

Read More

The Dynamic Monte Carlo (DMC) method is an established molecular simulation technique for the analysis of the dynamics in colloidal suspensions. An excellent alternative to Brownian Dynamics or Molecular Dynamics simulation, DMC is applicable to systems of spherical and/or anisotropic particles and to equilibrium or out-of-equilibrium processes. In this work, we present a theoretical and methodological framework to extend DMC to the study of heterogeneous systems, where the presence of an interface between coexisting phases introduces an additional element of complexity in determining the dynamic properties. In particular, we simulate a Lennard-Jones fluid at the liquid-vapor equilibrium and determine the diffusion coefficients in the bulk of each phase and across the interface. To test the validity of our DMC results, we also perform Brownian Dynamics simulations and unveil an excellent quantitative agreement between the two simulation techniques.
118 - J.T. Padding , A.A. Louis 2007
We apply a hybrid Molecular Dynamics and mesoscopic simulation technique to study the steady-state sedimentation of hard sphere particles for Peclet numbers (Pe) ranging from 0.08 to 12. Hydrodynamic back-flow causes a reduction of the average sedimentation velocity relative to the Stokes velocity. We find that this effect is independent of Pe number. Velocity fluctuations show the expected effects of thermal fluctuations at short correlation times. At longer times, non-equilibrium hydrodynamic fluctuations are visible, and their character appears to be independent of the thermal fluctuations. The hydrodynamic fluctuations dominate the diffusive behavior even for modest Pe number, while conversely the short-time fluctuations are dominated by thermal effects for a surprisingly large Pe numbers. Inspired by recent experiments, we also study finite sedimentation in a horizontal planar slit. In our simulations distinct lateral patterns emerge, in agreement with observations in the experiments.
We perform detailed computational and experimental measurements of the driven dynamics of a dense, uniform suspension of sedimented microrollers driven by a magnetic field rotating around an axis parallel to the floor. We develop a lubrication-corrected Brownian Dynamics method for dense suspensions of driven colloids sedimented above a bottom wall. The numerical method adds lubrication friction between nearby pairs of particles, as well as particles and the bottom wall, to a minimally-resolved model of the far-field hydrodynamic interactions. Our experiments combine fluorescent labeling with particle tracking to trace the trajectories of individual particles in a dense suspension, and to measure their propulsion velocities. Previous computational studies [B. Sprinkle et al., J. Chem. Phys., 147, 244103, 2017] predicted that at sufficiently high densities a uniform suspension of microrollers separates into two layers, a slow monolayer right above the wall, and a fast layer on top of the bottom layer. Here we verify this prediction, showing good quantitative agreement between the bimodal distribution of particle velocities predicted by the lubrication-corrected Brownian Dynamics and those measured in the experiments. The computational method accurately predicts the rate at which particles are observed to switch between the slow and fast layers in the experiments. We also use our numerical method to demonstrate the important role that pairwise lubrication plays in motility-induced phase separation in dense monolayers of colloidal microrollers, as recently suggested for suspensions of Quincke rollers [D. Geyer et al., Physical Review X, 9(3), 031043, 2019].
Understanding the rheology of colloidal suspensions is crucial in the formulation of a wide selection of industry-relevant products. To characterise the viscoelastic behaviour of these soft materials, one can analyse the microscopic dynamics of colloidal tracers diffusing through the host fluid and generating local deformations and stresses. This technique, referred to as microrheology, links the bulk rheology of fluids to the microscopic dynamics at the particle scale. If tracers are subjected to external forces, rather than freely diffusing, it is called active microrheology. Motivated by the impact of microrheology in providing information on local structure in complex systems such as colloidal glasses, active matter or biological systems, we have extended the dynamic Monte Carlo (DMC) technique to investigate active microrheology in colloids. The original DMC framework, able to accurately describe the Brownian dynamics of colloids at equilibrium, is here reconsidered and expanded to describe the effects of an external force pulling a tracer embedded in isotropic colloidal suspensions at different densities. To this end, we studied the dynamics of a spherical tracer dragged by a constant external force through a bath of spherical and rod-like particles of comparable size. We could extract valuable details on its effective friction coefficient, being constant at small and large values of the external force, but otherwise displaying a nonlinear behaviour that indicates the occurrence of a force-thinning regime. Our DMC simulation results are in excellent quantitative agreement with past Langevin dynamics simulations and theoretical works for the bath of spherical colloids. The bath of rod-like particles is studied in the isotropic phase, and displays an example where DMC is more convenient than Brownian or Langevin dynamics, in this case in dealing with particle rotation.
155 - Matthieu Wyart , Mike Cates 2013
A consensus is emerging that discontinuous shear thickening (DST) in dense suspensions marks a transition from a flow state where particles remain well separated by lubrication layers, to one dominated by frictional contacts. We show here that reasonable assumptions about contact proliferation predict two distinct types of DST in the absence of inertia. The first occurs at densities above the jamming point of frictional particles; here the thickened state is completely jammed and (unless particles deform) cannot flow without inhomogeneity or fracture. The second regime shows strain- rate hysteresis and arises at somewhat lower densities where the thickened phase flows smoothly. DST is predicted to arise when finite-range repulsions defer contact formation until a characteristic stress level is exceeded.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا