Do you want to publish a course? Click here

Microrheology of colloidal suspensions via Dynamic Monte Carlo simulations

122   0   0.0 ( 0 )
 Added by Alessandro Patti
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Understanding the rheology of colloidal suspensions is crucial in the formulation of a wide selection of industry-relevant products. To characterise the viscoelastic behaviour of these soft materials, one can analyse the microscopic dynamics of colloidal tracers diffusing through the host fluid and generating local deformations and stresses. This technique, referred to as microrheology, links the bulk rheology of fluids to the microscopic dynamics at the particle scale. If tracers are subjected to external forces, rather than freely diffusing, it is called active microrheology. Motivated by the impact of microrheology in providing information on local structure in complex systems such as colloidal glasses, active matter or biological systems, we have extended the dynamic Monte Carlo (DMC) technique to investigate active microrheology in colloids. The original DMC framework, able to accurately describe the Brownian dynamics of colloids at equilibrium, is here reconsidered and expanded to describe the effects of an external force pulling a tracer embedded in isotropic colloidal suspensions at different densities. To this end, we studied the dynamics of a spherical tracer dragged by a constant external force through a bath of spherical and rod-like particles of comparable size. We could extract valuable details on its effective friction coefficient, being constant at small and large values of the external force, but otherwise displaying a nonlinear behaviour that indicates the occurrence of a force-thinning regime. Our DMC simulation results are in excellent quantitative agreement with past Langevin dynamics simulations and theoretical works for the bath of spherical colloids. The bath of rod-like particles is studied in the isotropic phase, and displays an example where DMC is more convenient than Brownian or Langevin dynamics, in this case in dealing with particle rotation.



rate research

Read More

The Dynamic Monte Carlo (DMC) method is an established molecular simulation technique for the analysis of the dynamics in colloidal suspensions. An excellent alternative to Brownian Dynamics or Molecular Dynamics simulation, DMC is applicable to systems of spherical and/or anisotropic particles and to equilibrium or out-of-equilibrium processes. In this work, we present a theoretical and methodological framework to extend DMC to the study of heterogeneous systems, where the presence of an interface between coexisting phases introduces an additional element of complexity in determining the dynamic properties. In particular, we simulate a Lennard-Jones fluid at the liquid-vapor equilibrium and determine the diffusion coefficients in the bulk of each phase and across the interface. To test the validity of our DMC results, we also perform Brownian Dynamics simulations and unveil an excellent quantitative agreement between the two simulation techniques.
In a microrheological set-up a single probe particle immersed in a complex fluid is exposed to a strong external force driving the system out of equilibrium. Here, we elaborate analytically the time-dependent response of a probe particle in a dilute suspension of Brownian particles to a large step-force, exact in first order of the density of the bath particles. The time-dependent drift velocity approaches its stationary state value exponentially fast for arbitrarily small driving in striking contrast to the power-law prediction of linear response encoded in the long-time tails of the velocity autocorrelation function. We show that the stationary-state behavior depends nonanalytically on the driving force and connect this behavior to the persistent correlations in the equilibrium state. We argue that this relation holds generically. Furthermore, we elaborate that the fluctuations in the direction of the force display transient superdiffusive behavior.
Particle size is a key variable in understanding the behaviour of the particulate products that underpin much of our modern lives. Typically obtained from suspensions at rest, measuring the particle size under flowing conditions would enable advances for in-line testing during manufacture and high-throughput testing during development. However, samples are often turbid, multiply scattering light and preventing the direct use of common sizing techniques. Differential dynamic microscopy (DDM) is a powerful technique for analysing video microscopy of such samples, measuring diffusion and hence particle size without the need to resolve individual particles while free of substantial user input. However, when applying DDM to a flowing sample, diffusive dynamics are rapidly dominated by flow effects, preventing particle sizing. Here, we develop flow-DDM, a novel analysis scheme that combines optimised imaging conditions, a drift-velocity correction and modelling of the impact of flow. Flow-DDM allows a decoupling of flow from diffusive motion that facilitates successful particle size measurements at flow speeds an order of magnitude higher than for DDM. We demonstrate the generality of the technique by applying flow-DDM to two separate microscopy methods and flow geometries.
We study theoretically the velocity cross-correlations of a viscous fluid confined in a slit between two viscoelastic media. We analyze the effect of these correlations on the motions of particles suspended in the fluid. The compliance of the confining boundaries gives rise to a long-ranged pair correlation, decaying only as $1/r$ with the interparticle distance $r$. We show how this long-ranged effect may be used to extract the viscoelastic properties of the confining media without embedding tracer particles in them. We discuss the remarkable robustness of such a potential technique with respect to details of the confinement, and its expected statistical advantages over standard two-point microrheology.
We report on a comprehensive theory-simulation-experimental study of collective and self-diffusion in suspensions of charge-stabilized colloidal spheres. In simulation and theory, the spheres interact by a hard-core plus screened Coulomb pair potential. Intermediate and self-intermediate scattering functions are calculated by accelerated Stokesian Dynamics simulations where hydrodynamic interactions (HIs) are fully accounted for. The study spans the range from the short-time to the colloidal long-time regime. Additionally, Brownian Dynamics simulation and mode-coupling theory (MCT) results are generated where HIs are neglected. It is shown that HIs enhance collective and self-diffusion at intermediate and long times, whereas at short times self-diffusion, and for certain wavenumbers also collective diffusion, are slowed down. MCT significantly overestimate the slowing influence of dynamic particle caging. The simulated scattering functions are in decent agreement with our dynamic light scattering (DLS) results for suspensions of charged silica spheres. Simulation and theoretical results are indicative of a long-time exponential decay of the intermediate scattering function. The approximate validity of a far-reaching time-wavenumber factorization of the scattering function is shown to be a consequence of HIs. Our study of collective diffusion is amended by simulation and theoretical results for the self-intermediate scattering function and the particle mean squared displacement (MSD). Since self-diffusion is not assessed in DLS measurements, a method to deduce the MSD approximately in DLS is theoretically validated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا