Do you want to publish a course? Click here

Hybrid Blockchain-Enabled Secure Microservices Fabric for Decentralized Multi-Domain Avionics Systems

66   0   0.0 ( 0 )
 Added by Yu Chen
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Advancement in artificial intelligence (AI) and machine learning (ML), dynamic data driven application systems (DDDAS), and hierarchical cloud-fog-edge computing paradigm provide opportunities for enhancing multi-domain systems performance. As one example that represents multi-domain scenario, a fly-by-feel system utilizes DDDAS framework to support autonomous operations and improve maneuverability, safety and fuel efficiency. The DDDAS fly-by-feel avionics system can enhance multi-domain coordination to support domain specific operations. However, conventional enabling technologies rely on a centralized manner for data aggregation, sharing and security policy enforcement, and it incurs critical issues related to bottleneck of performance, data provenance and consistency. Inspired by the containerized microservices and blockchain technology, this paper introduces BLEM, a hybrid BLockchain-Enabled secure Microservices fabric to support decentralized, secure and efficient data fusion and multi-domain operations for avionics systems. Leveraging the fine-granularity and loose-coupling features of the microservices architecture, multidomain operations and security functionalities are decoupled into multiple containerized microservices. A hybrid blockchain fabric based on two-level committee consensus protocols is proposed to enable decentralized security architecture and support immutability, auditability and traceability for data provenience in existing multi-domain avionics system. Our evaluation results show the feasibility of the proposed BLEM mechanism to support decentralized security service and guarantee immutability, auditability and traceability for data provenience across domain boundaries.



rate research

Read More

To promote the benefits of the Internet of Things (IoT) in smart communities and smart cities, a real-time data marketplace middleware platform, called the Intelligent IoT Integrator (I3), has been recently proposed. While facilitating the easy exchanges of real-time IoT data streams between device owners and third-party applications through the marketplace, I3 is presently a monolithic, centralized platform for a single community. Although the service oriented architecture (SOA) has been widely adopted in the IoT and cyber-physical systems (CPS), it is difficult for a monolithic architecture to provide scalable, inter-operable and extensible services for large numbers of distributed IoT devices and different application vendors. Traditional security solutions rely on a centralized authority, which can be a performance bottleneck or susceptible to a single point of failure. Inspired by containerized microservices and blockchain technology, this paper proposed a BLockchain-ENabled Secure Microservices for Decentralized Data Marketplaces (BlendSM-DDM). Within a permissioned blockchain network, a microservices based security mechanism is introduced to secure data exchange and payment among participants in the marketplace. BlendSM-DDM is able to offer a decentralized, scalable and auditable data exchanges for the data marketplace.
Thanks to rapid technological advances in the Internet of Things (IoT), a smart public safety (SPS) system has become feasible by integrating heterogeneous computing devices to collaboratively provide public protection services. While a service oriented architecture (SOA) has been adopted by IoT and cyber-physical systems (CPS), it is difficult for a monolithic architecture to provide scalable and extensible services for a distributed IoT based SPS system. Furthermore, traditional security solutions rely on a centralized authority, which can be a performance bottleneck or single point failure. Inspired by microservices architecture and blockchain technology, this paper proposes a BLockchain-ENabled Decentralized Microservices Architecture for Smart public safety (BlendMAS). Within a permissioned blockchain network, a microservices based security mechanism is introduced to secure data access control in an SPS system. The functionality of security services are decoupled into separate containerized microservices that are built using a smart contract, and deployed on edge and fog computing nodes. An extensive experimental study verified that the proposed BlendMAS is able to offer a decentralized, scalable and secured data sharing and access control to distributed IoT based SPS system.
596 - Hao Xu , Lei Zhang , Yunqing Sun 2021
Radio Access Networks (RAN) tends to be more distributed in the 5G and beyond, in order to provide low latency and flexible on-demanding services. In this paper, Blockchain-enabled Radio Access Networks (BE-RAN) is proposed as a novel decentralized RAN architecture to facilitate enhanced security and privacy on identification and authentication. It can offer user-centric identity management for User Equipment (UE) and RAN elements, and enable mutual authentication to all entities while enabling on-demand point-to-point communication with accountable billing service add-on on public network. Also, a potential operating model with thorough decentralization of RAN is envisioned. The paper also proposed a distributed privacy-preserving P2P communication approach, as one of the core use cases for future mobile networks, is presented as an essential complement to the existing core network-based security and privacy management. The results show that BE-RAN significantly improves communication and computation overheads compared to the existing communication authentication protocols.
The future of healthcare systems is being shaped by incorporating emerged technological innovations to drive new models for patient care. By acquiring, integrating, analyzing, and exchanging medical data at different system levels, new practices can be introduced, offering a radical improvement to healthcare services. This paper presents a novel smart and secure Healthcare system (ssHealth), which, leveraging advances in edge computing and blockchain technologies, permits epidemics discovering, remote monitoring, and fast emergency response. The proposed system also allows for secure medical data exchange among local healthcare entities, thus realizing the integration of multiple national and international entities and enabling the correlation of critical medical events for, e.g., emerging epidemics management and control. In particular, we develop a blockchain-based architecture and enable a flexible configuration thereof, which optimize medical data sharing between different health entities and fulfil the diverse levels of Quality of Service (QoS) that ssHealth may require. Finally, we highlight the benefits of the proposed ssHealth system and possible directions for future research.
Blockchain is a popular method to ensure security for trusted systems. The benefits include an auditable method to provide decentralized security without a trusted third party, but the drawback is the large computational resources needed to process and store the ever-expanding chain of security blocks. The promise of blockchain for edge devices (e.g., internet of things) poses a variety of challenges and strategies before adoption. In this paper, we explore blockchain methods and examples, with experimental data to determine the merits of the capabilities. As for an aerospace example, we address a notional example for Automatic dependent surveillance-broadcast (ADS-B) from Flight24 data (https://www.flightradar24.com/) to determine whether blockchain is feasible for avionics systems. The methods are incorporated into the Lightweight Internet of Things (IoT) based Smart Public Safety (LISPS) framework. By decoupling a complex system into independent sub-tasks, the LISPS system possesses high flexibility in the design process and online maintenance. The Blockchain-enabled decentralized avionics services provide a secured data sharing and access control mechanism. The experimental results demonstrate the feasibility of the approach.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا