Do you want to publish a course? Click here

AmbigQA: Answering Ambiguous Open-domain Questions

91   0   0.0 ( 0 )
 Added by Sewon Min
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Ambiguity is inherent to open-domain question answering; especially when exploring new topics, it can be difficult to ask questions that have a single, unambiguous answer. In this paper, we introduce AmbigQA, a new open-domain question answering task which involves finding every plausible answer, and then rewriting the question for each one to resolve the ambiguity. To study this task, we construct AmbigNQ, a dataset covering 14,042 questions from NQ-open, an existing open-domain QA benchmark. We find that over half of the questions in NQ-open are ambiguous, with diverse sources of ambiguity such as event and entity references. We also present strong baseline models for AmbigQA which we show benefit from weakly supervised learning that incorporates NQ-open, strongly suggesting our new task and data will support significant future research effort. Our data and baselines are available at https://nlp.cs.washington.edu/ambigqa.



rate research

Read More

In open-domain question answering, questions are highly likely to be ambiguous because users may not know the scope of relevant topics when formulating them. Therefore, a system needs to find possible interpretations of the question, and predict one or multiple plausible answers. When multiple plausible answers are found, the system should rewrite the question for each answer to resolve the ambiguity. In this paper, we present a model that aggregates and combines evidence from multiple passages to adaptively predict a single answer or a set of question-answer pairs for ambiguous questions. In addition, we propose a novel round-trip prediction approach to iteratively generate additional interpretations that our model fails to find in the first pass, and then verify and filter out the incorrect question-answer pairs to arrive at the final disambiguated output. Our model, named Refuel, achieves a new state-of-the-art performance on the AmbigQA dataset, and shows competitive performance on NQ-Open and TriviaQA. The proposed round-trip prediction is a model-agnostic general approach for answering ambiguous open-domain questions, which improves our Refuel as well as several baseline models. We release source code for our models and experiments at https://github.com/amzn/refuel-open-domain-qa.
Existing approaches for open-domain question answering (QA) are typically designed for questions that require either single-hop or multi-hop reasoning, which make strong assumptions of the complexity of questions to be answered. Also, multi-step document retrieval often incurs higher number of relevant but non-supporting documents, which dampens the downstream noise-sensitive reader module for answer extraction. To address these challenges, we propose a unified QA framework to answer any-hop open-domain questions, which iteratively retrieves, reranks and filters documents, and adaptively determines when to stop the retrieval process. To improve the retrieval accuracy, we propose a graph-based reranking model that perform multi-document interaction as the core of our iterative reranking framework. Our method consistently achieves performance comparable to or better than the state-of-the-art on both single-hop and multi-hop open-domain QA datasets, including Natural Questions Open, SQuAD Open, and HotpotQA.
Recent work on Open Domain Question Answering has shown that there is a large discrepancy in model performance between novel test questions and those that largely overlap with training questions. However, it is as of yet unclear which aspects of novel questions that make them challenging. Drawing upon studies on systematic generalization, we introduce and annotate questions according to three categories that measure different levels and kinds of generalization: training set overlap, compositional generalization (comp-gen), and novel entity generalization (novel-entity). When evaluating six popular parametric and non-parametric models, we find that for the established Natural Questions and TriviaQA datasets, even the strongest model performance for comp-gen/novel-entity is 13.1/5.4% and 9.6/1.5% lower compared to that for the full test set -- indicating the challenge posed by these types of questions. Furthermore, we show that whilst non-parametric models can handle questions containing novel entities, they struggle with those requiring compositional generalization. Through thorough analysis we find that key question difficulty factors are: cascading errors from the retrieval component, frequency of question pattern, and frequency of the entity.
To date, most of recent work under the retrieval-reader framework for open-domain QA focuses on either extractive or generative reader exclusively. In this paper, we study a hybrid approach for leveraging the strengths of both models. We apply novel techniques to enhance both extractive and generative readers built upon recent pretrained neural language models, and find that proper training methods can provide large improvement over previous state-of-the-art models. We demonstrate that a simple hybrid approach by combining answers from both readers can efficiently take advantages of extractive and generative answer inference strategies and outperforms single models as well as homogeneous ensembles. Our approach outperforms previous state-of-the-art models by 3.3 and 2.7 points in exact match on NaturalQuestions and TriviaQA respectively.
Open-domain Question Answering (ODQA) has achieved significant results in terms of supervised learning manner. However, data annotation cannot also be irresistible for its huge demand in an open domain. Though unsupervised QA or unsupervised Machine Reading Comprehension (MRC) has been tried more or less, unsupervised ODQA has not been touched according to our best knowledge. This paper thus pioneers the work of unsupervised ODQA by formally introducing the task and proposing a series of key data construction methods. Our exploration in this work inspiringly shows unsupervised ODQA can reach up to 86% performance of supervised ones.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا