No Arabic abstract
We use DNS to study inter-scale and inter-space energy exchanges in the near-field of a turbulent wake of a square prism in terms of the KHMH equation written for a triple decomposition of the velocity field accounting for the quasi-periodic vortex shedding. Orientation-averaged terms of the KHMH are computed on the plane of the mean flow and on the geometric centreline. We consider locations between $2$ and $8$ times the width $d$ of the prism. The mean flow produces kinetic energy which feeds the vortex shedding coherent structures. In turn, these structures transfer energy to the stochastic fluctuations over all length-scales $r$ from the Taylor length $lambda$ to $d$ and dominate spatial turbulent transport of two-point stochastic turbulent fluctuations. The orientation-averaged non-linear inter-scale transfer rate $Pi^{a}$ which was found to be approximately independent of $r$ by Alves Portela et. al. (2017) in the range $lambdale r le 0.3d$ at a distance $x_{1}=2d$ from the square prism requires an inter-scale transfer contribution of coherent structures for this approximate constancy. However, the near-constancy of $Pi^a$ at $x_1=8d$ which was also found by Alves Portela et. al. (2017) is mostly due to stochastic fluctuations. Even so, the proximity of $-Pi^a$ to the turbulence dissipation rate $varepsilon$ in the range $lambdale rle d$ at $x_1=8d$ requires contributions of the coherent structures. Spatial inhomogeneity also makes a direct and distinct contribution to $Pi^a$, and the constancy of $-Pi^a/varepsilon$ close to 1 would not have been possible without it either in this near-field flow. Finally, the pressure-velocity term is also an important contributor to the KHMH, particularly at scales r larger than about $0.4d$, and appears to correlate with the purely stochastic non-linear inter-scale transfer rate when the orientation average is lifted.
In this paper, we employ Lagrangian coherent structures (LCSs) theory for the three dimensional vortex eduction and investigate the effect of large-scale vortical structures on the turbulent/non-turbulent interface (TNTI) and entrainment of a gravity current. The gravity current is realized experimentally and different levels of stratification are examined. For flow measurements, we use a multivolume three-dimensional particle tracking velocimetry technique. To identify vortical LCSs (VLCSs), a fully automated 3D extraction algorithm for multiple flow structures based on the so-called Lagrangian-Averaged Vorticity Deviation method is implemented. The size, the orientation and the shape of the VLCSs are analyzed and the results show that these characteristics depend only weakly on the strength of the stratification. Through conditional analysis, we provide evidence that VLCSs modulate the average TNTI height, affecting consequently the entrainment process. Furthermore, VLCSs influence the local entrainment velocity and organize the flow field on both the turbulent and non-turbulent sides of the gravity current boundary.
The aim of the present work is to investigate the role of coherent structures in the generation of the secondary flow in a turbulent square duct. The coherent structures are defined as connected regions of flow where the product of the instantaneous fluctuations of two velocity components is higher than a threshold based on the long-time turbulence statistics, in the spirit of the three-dimensional quadrant analysis proposed by Lozano-Duran et al. (J. Fluid Mech., vol. 694, 2012, pp. 100-130). We consider both the direct contribution of the structures to the mean in-plane velocity components and their geometrical properties. The instantaneous phenomena taking place in the turbulent duct are compared with turbulent channel flow at Reynolds numbers of $Re_tau=180$ and $360$, based on friction velocity at the center-plane and channel half height. In the core region of the duct, the fractional contribution of intense events to the wall-normal component of the mean velocity is in very good agreement with that in the channel, despite the presence of the secondary flow in the former. Additionally, the shapes of the three-dimensional objects do not differ significantly in both flows. On the other hand, in the corner region of the duct, the proximity of the walls affects both the geometrical properties of the coherent structures and the contribution to the mean component of the vertical velocity, which is less relevant than that of the complementary portion of the flow not included in such objects. Our results show however that strong Reynolds shear-stress events, despite the differences observed between channel and duct, do not contribute directly to the secondary motion, and thus other phenomena need to be considered instead.
Data from Direct Numerical Simulations of disperse bubbly flows in a vertical channel are used to study the effect of the bubbles on the carrier-phase turbulence. A new method is developed, based on the barycentric map approach, that allows to quantify the anisotropy and componentiality of the flow at any scale. Using this the bubbles are found to significantly enhance flow anisotropy at all scales compared with the unladen case, and for some bubble cases, very strong anisotropy persists down to the smallest flow scales. The strongest anisotropy observed was for the cases involving small bubbles. Concerning the inter-scale energy transfer, our results indicate that for the bubble-laden cases, the energy transfer is from large to small scales, just as for the unladen case. However, there is evidence of an upscale transfer when considering the transfer of energy associated with particular components of the velocity field. Although the direction of the energy transfer is the same with and without the bubbles, the transfer is much stronger for the bubble-laden cases, suggesting that the bubbles play a strong role in enhancing the activity of the nonlinear term in the flow. The normalized forms of the fourth and sixth-order structure functions are also considered, and reveal that the introduction of bubbles into the flow strongly enhances intermittency in the dissipation range, but suppresses it at larger scales. This strong enhancement of the dissipation scale intermittency has significant implications for understanding how the bubbles might modify the mixing properties of turbulent flows.
This paper concerns the study of direct numerical simulation (DNS) data of a wavepacket in laminar turbulent transition in a Blasius boundary layer. The decomposition of this wavepacket into a set of modes (a basis that spans an approximate solution space) can be achieved in a wide variety of ways. Two well-known tools are the fast Fourier transform (FFT) and the proper orthogonal decomposition (POD). To synergize the strengths of both methods, a hybrid POD-FFT is pioneered, using the FFT as a tool for interpreting the POD modes. The POD-FFT automatically identifies well-known fundamental, subharmonic and Klebanoff modes in the flow, even though it is blind to the underlying physics. Moreover, the POD-FFT further separates the subharmonic content of the wavepacket into three fairly distinct parts: a positively detuned mode resembling a Lambda-vortex, a Craik-type tuned mode and a Herbert-type positive-negative detuned mode pair, in decreasing order of energy. This distinction is less widely recognized, but it provides a possible explanation for the slightly positively detuned subharmonic mode often observed in previous experiments and simulations.
Evolution of stochastically homogeneous magnetic field advected by incompressible turbulent flow with large magnetic Prandtl numbers is considered at the scales less than Kolmogorov viscous scale. It is shown that, despite unlimited growth of the magnetic field, its feedback on the fluids dynamics remains negligibly small.