Do you want to publish a course? Click here

Coherent structures and secondary flow in turbulent square duct

100   0   0.0 ( 0 )
 Added by Marco Atzori
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The aim of the present work is to investigate the role of coherent structures in the generation of the secondary flow in a turbulent square duct. The coherent structures are defined as connected regions of flow where the product of the instantaneous fluctuations of two velocity components is higher than a threshold based on the long-time turbulence statistics, in the spirit of the three-dimensional quadrant analysis proposed by Lozano-Duran et al. (J. Fluid Mech., vol. 694, 2012, pp. 100-130). We consider both the direct contribution of the structures to the mean in-plane velocity components and their geometrical properties. The instantaneous phenomena taking place in the turbulent duct are compared with turbulent channel flow at Reynolds numbers of $Re_tau=180$ and $360$, based on friction velocity at the center-plane and channel half height. In the core region of the duct, the fractional contribution of intense events to the wall-normal component of the mean velocity is in very good agreement with that in the channel, despite the presence of the secondary flow in the former. Additionally, the shapes of the three-dimensional objects do not differ significantly in both flows. On the other hand, in the corner region of the duct, the proximity of the walls affects both the geometrical properties of the coherent structures and the contribution to the mean component of the vertical velocity, which is less relevant than that of the complementary portion of the flow not included in such objects. Our results show however that strong Reynolds shear-stress events, despite the differences observed between channel and duct, do not contribute directly to the secondary motion, and thus other phenomena need to be considered instead.

rate research

Read More

Starting from stationary bifurcations in Couette-Dean flow, we compute nontrivial stationary solutions in inertialess viscoelastic circular Couette flow. These solutions are strongly localized vortex pairs, exist at arbitrarily large wavelengths, and show hysteresis in the Weissenberg number, similar to experimentally observed ``diwhirl patterns. Based on the computed velocity and stress fields, we elucidate a heuristic, fully nonlinear mechanism for these flows. We propose that these localized, fully nonlinear structures comprise fundamental building blocks for complex spatiotemporal dynamics in the flow of elastic liquids.
The numerical simulation of a flow through a duct requires an externally specified forcing that makes the fluid flow against viscous friction. To this aim, it is customary to enforce a constant value for either the flow rate (CFR) or the pressure gradient (CPG). When comparing a laminar duct flow before and after a geometrical modification that induces a change of the viscous drag, both approaches (CFR and CPG) lead to a change of the power input across the comparison. Similarly, when carrying out the (DNS and LES) numerical simulation of unsteady turbulent flows, the power input is not constant over time. Carrying out a simulation at constant power input (CPI) is thus a further physically sound option, that becomes particularly appealing in the context of flow control, where a comparison between control-on and control-off conditions has to be made. We describe how to carry out a CPI simulation, and start with defining a new power-related Reynolds number, whose velocity scale is the bulk flow that can be attained with a given pumping power in the laminar regime. Under the CPI condition, we derive a relation that is equivalent to the Fukagata--Iwamoto--Kasagi relation valid for CFR (and to its extension valid for CPG), that presents the additional advantage of natively including the required control power. The implementation of the CPI approach is then exemplified in the standard case of a plane turbulent channel flow, and then further applied to a flow control case, where the spanwise-oscillating wall is used for skin friction drag reduction. For this low-Reynolds number flow, using 90% of the available power for the pumping system and the remaining 10% for the control system is found to be the optimum share that yields the largest increase of the flow rate above the reference case, where 100% of the power goes to the pump.
In this paper, we employ Lagrangian coherent structures (LCSs) theory for the three dimensional vortex eduction and investigate the effect of large-scale vortical structures on the turbulent/non-turbulent interface (TNTI) and entrainment of a gravity current. The gravity current is realized experimentally and different levels of stratification are examined. For flow measurements, we use a multivolume three-dimensional particle tracking velocimetry technique. To identify vortical LCSs (VLCSs), a fully automated 3D extraction algorithm for multiple flow structures based on the so-called Lagrangian-Averaged Vorticity Deviation method is implemented. The size, the orientation and the shape of the VLCSs are analyzed and the results show that these characteristics depend only weakly on the strength of the stratification. Through conditional analysis, we provide evidence that VLCSs modulate the average TNTI height, affecting consequently the entrainment process. Furthermore, VLCSs influence the local entrainment velocity and organize the flow field on both the turbulent and non-turbulent sides of the gravity current boundary.
We present a construction of isotropic boundary adapted wavelets, which are orthogonal and yield a multi-resolution analysis. We analyze direct numerical simulation data of turbulent channel flow computed at a friction Reynolds number of 395, and investigate the role of coherent vorticity. Thresholding of the vorticity wavelet coefficients allows to split the flow into two parts, coherent and incoherent vorticity. The coherent vorticity is reconstructed from their few intense wavelet coefficients. The statistics of the coherent part, i.e., energy and enstrophy spectra, are close to the statistics of the total flow, and moreover, the nonlinear energy budgets are very well preserved. The remaining incoherent part, represented by the large majority of the weak wavelet coefficients, corresponds to a structureless, i.e., noise-like, background flow whose energy is equidistributed.
We use DNS to study inter-scale and inter-space energy exchanges in the near-field of a turbulent wake of a square prism in terms of the KHMH equation written for a triple decomposition of the velocity field accounting for the quasi-periodic vortex shedding. Orientation-averaged terms of the KHMH are computed on the plane of the mean flow and on the geometric centreline. We consider locations between $2$ and $8$ times the width $d$ of the prism. The mean flow produces kinetic energy which feeds the vortex shedding coherent structures. In turn, these structures transfer energy to the stochastic fluctuations over all length-scales $r$ from the Taylor length $lambda$ to $d$ and dominate spatial turbulent transport of two-point stochastic turbulent fluctuations. The orientation-averaged non-linear inter-scale transfer rate $Pi^{a}$ which was found to be approximately independent of $r$ by Alves Portela et. al. (2017) in the range $lambdale r le 0.3d$ at a distance $x_{1}=2d$ from the square prism requires an inter-scale transfer contribution of coherent structures for this approximate constancy. However, the near-constancy of $Pi^a$ at $x_1=8d$ which was also found by Alves Portela et. al. (2017) is mostly due to stochastic fluctuations. Even so, the proximity of $-Pi^a$ to the turbulence dissipation rate $varepsilon$ in the range $lambdale rle d$ at $x_1=8d$ requires contributions of the coherent structures. Spatial inhomogeneity also makes a direct and distinct contribution to $Pi^a$, and the constancy of $-Pi^a/varepsilon$ close to 1 would not have been possible without it either in this near-field flow. Finally, the pressure-velocity term is also an important contributor to the KHMH, particularly at scales r larger than about $0.4d$, and appears to correlate with the purely stochastic non-linear inter-scale transfer rate when the orientation average is lifted.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا