Do you want to publish a course? Click here

Disease spreading with social distancing: A prevention strategy in disordered multiplex networks

71   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English
 Authors I. A. Perez




Ask ChatGPT about the research

The frequent emergence of diseases with the potential to become threats at local and global scales, such as influenza A(H1N1), SARS, MERS, and recently COVID-19 disease, makes it crucial to keep designing models of disease propagation and strategies to prevent or mitigate their effects in populations. Since isolated systems are exceptionally rare to find in any context, especially in human contact networks, here we examine the susceptible-infected-recovered model of disease spreading in a multiplex network formed by two distinct networks or layers, interconnected through a fraction $q$ of shared individuals (overlap). We model the interactions through weighted networks, because person-to-person interactions are diverse (or disordered); weights represent the contact times of the interactions. Using branching theory supported by simulations, we analyze a social distancing strategy that reduces the average contact time in both layers, where the intensity of the distancing is related to the topology of the layers. We find that the critical values of the distancing intensities, above which an epidemic can be prevented, increase with the overlap $q$. Also we study the effect of the social distancing on the mutual giant component of susceptible individuals, which is crucial to keep the functionality of the system. In addition, we find that for relatively small values of the overlap $q$, social distancing policies might not be needed at all to maintain the functionality of the system.



rate research

Read More

The recurrent infectious diseases and their increasing impact on the society has promoted the study of strategies to slow down the epidemic spreading. In this review we outline the applications of percolation theory to describe strategies against epidemic spreading on complex networks. We give a general outlook of the relation between link percolation and the susceptible-infected-recovered model, and introduce the node void percolation process to describe the dilution of the network composed by healthy individual, $i.e$, the network that sustain the functionality of a society. Then, we survey two strategies: the quenched disorder strategy where an heterogeneous distribution of contact intensities is induced in society, and the intermittent social distancing strategy where health individuals are persuaded to avoid contact with their neighbors for intermittent periods of time. Using percolation tools, we show that both strategies may halt the epidemic spreading. Finally, we discuss the role of the transmissibility, $i.e$, the effective probability to transmit a disease, on the performance of the strategies to slow down the epidemic spreading.
Although suppressing the spread of a disease is usually achieved by investing in public resources, in the real world only a small percentage of the population have access to government assistance when there is an outbreak, and most must rely on resources from family or friends. We study the dynamics of disease spreading in social-contact multiplex networks when the recovery of infected nodes depends on resources from healthy neighbors in the social layer. We investigate how degree heterogeneity affects the spreading dynamics. Using theoretical analysis and simulations we find that degree heterogeneity promotes disease spreading. The phase transition of the infected density is hybrid and increases smoothly from zero to a finite small value at the first invasion threshold and then suddenly jumps at the second invasion threshold. We also find a hysteresis loop in the transition of the infected density. We further investigate how an overlap in the edges between two layers affects the spreading dynamics. We find that when the amount of overlap is smaller than a critical value the phase transition is hybrid and there is a hysteresis loop, otherwise the phase transition is continuous and the hysteresis loop vanishes. In addition, the edge overlap allows an epidemic outbreak when the transmission rate is below the first invasion threshold, but suppresses any explosive transition when the transmission rate is above the first invasion threshold.
We study a multi-type SIR epidemic process among a heterogeneous population that interacts through a network. When we base social contact on a random graph with given vertex degrees, we give limit theorems on the fraction of infected individuals. For a given social distancing individual strategies, we establish the epidemic reproduction number $R_0$ which can be used to identify network vulnerability and inform vaccination policies. In the second part of the paper we study the equilibrium of the social distancing game, in which individuals choose their social distancing level according to an anticipated global infection rate, which then must equal the actual infection rate following their choices. We give conditions for the existence and uniqueness of equilibrium. For the case of random regular graphs, we show that voluntary social distancing will always be socially sub-optimal.
Although there is always an interplay between the dynamics of information diffusion and disease spreading, the empirical research on the systemic coevolution mechanisms connecting these two spreading dynamics is still lacking. Here we investigate the coevolution mechanisms and dynamics between information and disease spreading by utilizing real data and a proposed spreading model on multiplex network. Our empirical analysis finds asymmetrical interactions between the information and disease spreading dynamics. Our results obtained from both the theoretical framework and extensive stochastic numerical simulations suggest that an information outbreak can be triggered in a communication network by its own spreading dynamics or by a disease outbreak on a contact network, but that the disease threshold is not affected by information spreading. Our key finding is that there is an optimal information transmission rate that markedly suppresses the disease spreading. We find that the time evolution of the dynamics in the proposed model qualitatively agrees with the real-world spreading processes at the optimal information transmission rate.
We study the critical effect of an intermittent social distancing strategy on the propagation of epidemics in adaptive complex networks. We characterize the effect of our strategy in the framework of the susceptible-infected-recovered model. In our model, based on local information, a susceptible individual interrupts the contact with an infected individual with a probability $sigma$ and restores it after a fixed time $t_{b}$. We find that, depending on the network topology, in our social distancing strategy there exists a cutoff threshold $sigma_{c}$ beyond which the epidemic phase disappears. Our results are supported by a theoretical framework and extensive simulations of the model. Furthermore we show that this strategy is very efficient because it leads to a susceptible herd behavior that protects a large fraction of susceptibles individuals. We explain our results using percolation arguments.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا