Do you want to publish a course? Click here

Fairness in Bio-inspired Optimization Research: A Prescription of Methodological Guidelines for Comparing Meta-heuristics

309   0   0.0 ( 0 )
 Added by Javier Del Ser Dr.
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Bio-inspired optimization (including Evolutionary Computation and Swarm Intelligence) is a growing research topic with many competitive bio-inspired algorithms being proposed every year. In such an active area, preparing a successful proposal of a new bio-inspired algorithm is not an easy task. Given the maturity of this research field, proposing a new optimization technique with innovative elements is no longer enough. Apart from the novelty, results reported by the authors should be proven to achieve a significant advance over previous outcomes from the state of the art. Unfortunately, not all new proposals deal with this requirement properly. Some of them fail to select an appropriate benchmark or reference algorithms to compare with. In other cases, the validation process carried out is not defined in a principled way (or is even not done at all). Consequently, the significance of the results presented in such studies cannot be guaranteed. In this work we review several recommendations in the literature and propose methodological guidelines to prepare a successful proposal, taking all these issues into account. We expect these guidelines to be useful not only for authors, but also for reviewers and editors along their assessment of new contributions to the field.



rate research

Read More

In this work we consider multitasking in the context of solving multiple optimization problems simultaneously by conducting a single search process. The principal goal when dealing with this scenario is to dynamically exploit the existing complementarities among the problems (tasks) being optimized, helping each other through the exchange of valuable knowledge. Additionally, the emerging paradigm of Evolutionary Multitasking tackles multitask optimization scenarios by using as inspiration concepts drawn from Evolutionary Computation. The main purpose of this survey is to collect, organize and critically examine the abundant literature published so far in Evolutionary Multitasking, with an emphasis on the methodological patterns followed when designing new algorithmic proposals in this area (namely, multifactorial optimization and multipopulation-based multitasking). We complement our critical analysis with an identification of challenges that remain open to date, along with promising research directions that can stimulate future efforts in this topic. Our discussions held throughout this manuscript are offered to the audience as a reference of the general trajectory followed by the community working in this field in recent times, as well as a self-contained entry point for newcomers and researchers interested to join this exciting research avenue.
Sense and avoid capability enables insects to fly versatilely and robustly in dynamic complex environment. Their biological principles are so practical and efficient that inspired we human imitating them in our flying machines. In this paper, we studied a novel bio-inspired collision detector and its application on a quadcopter. The detector is inspired from LGMD neurons in the locusts, and modeled into an STM32F407 MCU. Compared to other collision detecting methods applied on quadcopters, we focused on enhancing the collision selectivity in a bio-inspired way that can considerably increase the computing efficiency during an obstacle detecting task even in complex dynamic environment. We designed the quadcopters responding operation imminent collisions and tested this bio-inspired system in an indoor arena. The observed results from the experiments demonstrated that the LGMD collision detector is feasible to work as a vision module for the quadcopters collision avoidance task.
Deep convolutional neural networks (DCNNs) have revolutionized computer vision and are often advocated as good models of the human visual system. However, there are currently many shortcomings of DCNNs, which preclude them as a model of human vision. For example, in the case of adversarial attacks, where adding small amounts of noise to an image, including an object, can lead to strong misclassification of that object. But for humans, the noise is often invisible. If vulnerability to adversarial noise cannot be fixed, DCNNs cannot be taken as serious models of human vision. Many studies have tried to add features of the human visual system to DCNNs to make them robust against adversarial attacks. However, it is not fully clear whether human vision inspired components increase robustness because performance evaluations of these novel components in DCNNs are often inconclusive. We propose a set of criteria for proper evaluation and analyze different models according to these criteria. We finally sketch future efforts to make DCCNs one step closer to the model of human vision.
146 - Mingde Zhao , Hongwei Ge , Yi Lian 2018
The generalization abilities of heuristic optimizers may deteriorate with the increment of the search space dimensionality. To achieve generalized performance across Large Scale Blackbox Optimization (LSBO) tasks, it ispossible to ensemble several heuristics and devise a meta-heuristic to control their initiation. This paper first proposes a methodology of transforming LSBO problems into online decision processes to maximize efficiency of resource utilization. Then, using the perspective of multi-armed bandits with non-stationary reward distributions, we propose a meta-heuristic based on Temporal Estimation of Rewards (TER) to address such decision process. TER uses a window for temporal credit assignment and Boltzmann exploration to balance the exploration-exploitation tradeoff. The prior-free TER generalizes across LSBO tasks with flexibility for different types of limited computational resources (e.g. time, money, etc.) and is easy to be adapted to new tasks for its simplicity and easy interface for heuristic articulation. Tests on the benchmarks validate the problem formulation and suggest significant effectiveness: when TER is articulated with three heuristics, competitive performance is reported across different sets of benchmark problems with search dimensions up to 10000.
345 - Hao Huang 2020
Power systems are susceptible to natural threats including hurricanes and floods. Modern power grids are also increasingly threatened by cyber attacks. Existing approaches that help improve power system security and resilience may not be sufficient; this is evidenced by the continued challenge to supply energy to all customers during severe events. This paper presents an approach to address this challenge through bio-inspired power system network design to improve system reliability and resilience against disturbances. Inspired by naturally robust ecosystems, this paper considers the optimal ecological robustness that recognizes a unique balance between pathway efficiency and redundancy to ensure the survivability against disruptive events for given networks. This paper presents an approach that maximizes ecological robustness in transmission network design by formulating a mixed-integer nonlinear programming optimization problem with power system constraints. The results show the increase of the optimized power systems robustness and the improved reliability with less violations under N-x contingencies.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا