Do you want to publish a course? Click here

Grassmannian stochastic analysis and the stochastic quantization of Euclidean Fermions

81   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce a stochastic analysis of Grassmann random variables suitable for the stochastic quantization of Euclidean fermionic quantum field theories. Analysis on Grassmann algebras is developed here from the point of view of quantum probability: a Grassmann random variable is an homomorphism of an abstract Grassmann algebra into a quantum probability space, i.e. a $C^{ast}$-algebra endowed with a suitable state. We define the notion of Gaussian processes, Brownian motion and stochastic (partial) differential equations taking values in Grassmann algebras. We use them to study the long time behavior of finite and infinite dimensional Langevin Grassmann stochastic differential equations driven by Gaussian space-time white noise and to describe their invariant measures. As an application we give a proof of the stochastic quantization and of the removal of the space cut-off for the Euclidean Yukawa model, indicating also how this method can be extended to other models of quantum fields.



rate research

Read More

We study a class of elliptic SPDEs with additive Gaussian noise on $mathbb{R}^2 times M$, with $M$ a $d$-dimensional manifold equipped with a positive Radon measure, and a real-valued non linearity given by the derivative of a smooth potential $V$, convex at infinity and growing at most exponentially. For quite general coefficients and a suitable regularity of the noise we obtain, via the dimensional reduction principle discussed in our previous paper on the topic, the identity between the law of the solution to the SPDE evaluated at the origin with a Gibbs type measure on the abstract Wiener space $L^2 (M)$. The results are then applied to the elliptic stochastic quantization equation for the scalar field with polynomial interaction over $mathbb{T}^2$, and with exponential interaction over $mathbb{R}^2$ (known also as H{o}eg-Krohn or Liouville model in the literature). In particular for the exponential interaction case, the existence and uniqueness properties of solutions to the elliptic equation over $mathbb{R}^{2 + 2}$ is derived as well as the dimensional reduction for the values of the ``charge parameter $sigma = frac{alpha}{2sqrt{pi}} < sqrt{4 left( 8 - 4 sqrt{3} right) pi} simeq sqrt{4.23pi}$, for which the model has an Euclidean invariant probability measure (hence also permitting to get the corresponding relativistic invariant model on the two dimensional Minkowski space).
74 - Tadahiro Oh , Mamoru Okamoto , 2021
(Due to the limit on the number of characters for an abstract set by arXiv, the full abstract can not be displayed here. See the abstract in the paper.) We study the construction of the $Phi^3_3$-measure and complete the program on the (non-)construction of the focusing Gibbs measures, initiated by Lebowitz, Rose, and Speer (1988). This problem turns out to be critical, exhibiting the following phase transition. In the weakly nonlinear regime, we prove normalizability of the $Phi^3_3$-measure and show that it is singular with respect to the massive Gaussian free field. Moreover, we show that there exists a shifted measure with respect to which the $Phi^3_3$-measure is absolutely continuous. In the strongly nonlinear regime, by further developing the machinery introduced by the authors (2020), we establish non-normalizability of the $Phi^3_3$-measure. Due to the singularity of the $Phi^3_3$-measure with respect to the massive Gaussian free field, this non-normalizability part poses a particular challenge as compared to our previous works. In order to overcome this issue, we first construct a $sigma$-finite version of the $Phi^3_3$-measure and show that this measure is not normalizable. Furthermore, we prove that the truncated $Phi^3_3$-measures have no weak limit in a natural space, even up to a subsequence. We also study the dynamical problem. By adapting the paracontrolled approach, in particular from the works by Gubinelli, Koch, and the first author (2018) and by the authors (2020), we prove almost sure global well-posedness of the hyperbolic $Phi^3_3$-model and invariance of the Gibbs measure in the weakly nonlinear regime. In the globalization part, we introduce a new, conceptually simple and straightforward approach, where we directly work with the (truncated) Gibbs measure, using the variational formula and ideas from theory of optimal transport.
The (elliptic) stochastic quantization equation for the (massive) $cosh(beta varphi)_2$ model, for the charged parameter in the $L^2$ regime (i.e. $beta^2 < 4 pi$), is studied. We prove the existence, uniqueness and the properties of the invariant measure of the solution to this equation. The proof is obtained through a priori estimates and a lattice approximation of the equation. For implementing this strategy we generalize some properties of Besov space in the continuum to analogous results for Besov spaces on the lattice. As a final result we show as how to use the stochastic quantization equation to verify the Osterwalder-Schrader axioms for the $cosh (beta varphi)_2$ quantum field theory, including the exponential decay of correlation functions.
97 - Zachary P. Adams 2021
We study stochastic perturbations of ODE with stable limit cycles -- referred to as stochastic oscillators -- and investigate the response of the asymptotic (in time) frequency of oscillations to changing noise amplitude. Unlike previous studies, we do not restrict our attention to the small noise limit, and account for the fact that large deviation events may push the system out of its oscillatory regime. To do so, we consider stochastic oscillators conditioned on their remaining in an oscillatory regime for all time. This leads us to use the theory of quasi-ergodic measures, and to define quasi-asymptotic frequencies as conditional, long-time average frequencies. We show that quasi-asymptotic frequencies always exist, though they may or may not be observable in practice. Our discussion recovers previous results on stochastic oscillators in the literature. In particular, existing results imply that the asymptotic frequency of a stochastic oscillator depends quadratically on the noise amplitude. We describe scenarios where this prediction holds, though we also show that it is not true in general -- even for small noise.
We study a nonlinear stochastic heat equation forced by a space-time white noise on closed surfaces, with nonlinearity $e^{beta u}$. This equation corresponds to the stochastic quantization of the Liouville quantum gravity (LQG) measure. (i) We first revisit the construction of the LQG measure in Liouville conformal field theory (LCFT) in the $L^2$ regime $0<beta<sqrt{2}$. This uniformizes in this regime the approaches of David-Kupiainen-Rhodes-Vargas (2016), David-Rhodes-Vargas (2016) and Guillarmou-Rhodes-Vargas (2019) which treated the case of a closed surface with genus 0, 1 and $> 1$ respectively. Moreover, our argument shows that this measure is independent of the approximation procedure for a large class of smooth approximations. (ii) We prove almost sure global well-posedness of the parabolic stochastic dynamics, and invariance of the measure under this stochastic flow. In particular, our results improve previous results obtained by Garban (2020) in the cases of the sphere and the torus with their canonical metric, and are new in the case of closed surfaces with higher genus.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا