Do you want to publish a course? Click here

The elliptic stochastic quantization of some two dimensional Euclidean QFTs

112   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study a class of elliptic SPDEs with additive Gaussian noise on $mathbb{R}^2 times M$, with $M$ a $d$-dimensional manifold equipped with a positive Radon measure, and a real-valued non linearity given by the derivative of a smooth potential $V$, convex at infinity and growing at most exponentially. For quite general coefficients and a suitable regularity of the noise we obtain, via the dimensional reduction principle discussed in our previous paper on the topic, the identity between the law of the solution to the SPDE evaluated at the origin with a Gibbs type measure on the abstract Wiener space $L^2 (M)$. The results are then applied to the elliptic stochastic quantization equation for the scalar field with polynomial interaction over $mathbb{T}^2$, and with exponential interaction over $mathbb{R}^2$ (known also as H{o}eg-Krohn or Liouville model in the literature). In particular for the exponential interaction case, the existence and uniqueness properties of solutions to the elliptic equation over $mathbb{R}^{2 + 2}$ is derived as well as the dimensional reduction for the values of the ``charge parameter $sigma = frac{alpha}{2sqrt{pi}} < sqrt{4 left( 8 - 4 sqrt{3} right) pi} simeq sqrt{4.23pi}$, for which the model has an Euclidean invariant probability measure (hence also permitting to get the corresponding relativistic invariant model on the two dimensional Minkowski space).

rate research

Read More

We introduce a stochastic analysis of Grassmann random variables suitable for the stochastic quantization of Euclidean fermionic quantum field theories. Analysis on Grassmann algebras is developed here from the point of view of quantum probability: a Grassmann random variable is an homomorphism of an abstract Grassmann algebra into a quantum probability space, i.e. a $C^{ast}$-algebra endowed with a suitable state. We define the notion of Gaussian processes, Brownian motion and stochastic (partial) differential equations taking values in Grassmann algebras. We use them to study the long time behavior of finite and infinite dimensional Langevin Grassmann stochastic differential equations driven by Gaussian space-time white noise and to describe their invariant measures. As an application we give a proof of the stochastic quantization and of the removal of the space cut-off for the Euclidean Yukawa model, indicating also how this method can be extended to other models of quantum fields.
The (elliptic) stochastic quantization equation for the (massive) $cosh(beta varphi)_2$ model, for the charged parameter in the $L^2$ regime (i.e. $beta^2 < 4 pi$), is studied. We prove the existence, uniqueness and the properties of the invariant measure of the solution to this equation. The proof is obtained through a priori estimates and a lattice approximation of the equation. For implementing this strategy we generalize some properties of Besov space in the continuum to analogous results for Besov spaces on the lattice. As a final result we show as how to use the stochastic quantization equation to verify the Osterwalder-Schrader axioms for the $cosh (beta varphi)_2$ quantum field theory, including the exponential decay of correlation functions.
We consider space-time quantum fields with exponential/trigonometric interactions. In the context of Euclidean quantum field theory, the former and the latter are called the Hoegh-Krohn model and the Sine-Gordon model, respectively. The main objective of the present paper is to construct infinite dimensional diffusion processes which solve modified stochastic quantization equations for these quantum fields on the two-dimensional torus by the Dirichlet form approach and to prove strong uniqueness of the corresponding Dirichlet operators.
74 - Tadahiro Oh , Mamoru Okamoto , 2021
(Due to the limit on the number of characters for an abstract set by arXiv, the full abstract can not be displayed here. See the abstract in the paper.) We study the construction of the $Phi^3_3$-measure and complete the program on the (non-)construction of the focusing Gibbs measures, initiated by Lebowitz, Rose, and Speer (1988). This problem turns out to be critical, exhibiting the following phase transition. In the weakly nonlinear regime, we prove normalizability of the $Phi^3_3$-measure and show that it is singular with respect to the massive Gaussian free field. Moreover, we show that there exists a shifted measure with respect to which the $Phi^3_3$-measure is absolutely continuous. In the strongly nonlinear regime, by further developing the machinery introduced by the authors (2020), we establish non-normalizability of the $Phi^3_3$-measure. Due to the singularity of the $Phi^3_3$-measure with respect to the massive Gaussian free field, this non-normalizability part poses a particular challenge as compared to our previous works. In order to overcome this issue, we first construct a $sigma$-finite version of the $Phi^3_3$-measure and show that this measure is not normalizable. Furthermore, we prove that the truncated $Phi^3_3$-measures have no weak limit in a natural space, even up to a subsequence. We also study the dynamical problem. By adapting the paracontrolled approach, in particular from the works by Gubinelli, Koch, and the first author (2018) and by the authors (2020), we prove almost sure global well-posedness of the hyperbolic $Phi^3_3$-model and invariance of the Gibbs measure in the weakly nonlinear regime. In the globalization part, we introduce a new, conceptually simple and straightforward approach, where we directly work with the (truncated) Gibbs measure, using the variational formula and ideas from theory of optimal transport.
Lattice spin models in statistical physics are used to understand magnetism. Their Hamiltonians are a discrete form of a version of a Dirichlet energy, signifying a relationship to the Harmonic map heat flow equation. The Gibbs distribution, defined with this Hamiltonian, is used in the Metropolis-Hastings (M-H) algorithm to generate dynamics tending towards an equilibrium state. In the limiting situation when the inverse temperature is large, we establish the relationship between the discrete M-H dynamics and the continuous Harmonic map heat flow associated with the Hamiltonian. We show the convergence of the M-H dynamics to the Harmonic map heat flow equation in two steps: First, with fixed lattice size and proper choice of proposal size in one M-H step, the M-H dynamics acts as gradient descent and will be shown to converge to a system of Langevin stochastic differential equations (SDE). Second, with proper scaling of the inverse temperature in the Gibbs distribution and taking the lattice size to infinity, it will be shown that this SDE system converges to the deterministic Harmonic map heat flow equation. Our results are not unexpected, but show remarkable connections between the M-H steps and the SDE Stratonovich formulation, as well as reveal trajectory-wise out of equilibrium dynamics to be related to a canonical PDE system with geometric constraints.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا