Do you want to publish a course? Click here

ViSQOL v3: An Open Source Production Ready Objective Speech and Audio Metric

107   0   0.0 ( 0 )
 Added by Michael Chinen
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Estimation of perceptual quality in audio and speech is possible using a variety of methods. The combined v3 release of ViSQOL and ViSQOLAudio (for speech and audio, respectively,) provides improvements upon previo



rate research

Read More

We present a freely available speech corpus for the Uzbek language and report preliminary automatic speech recognition (ASR) results using both the deep neural network hidden Markov model (DNN-HMM) and end-to-end (E2E) architectures. The Uzbek speech corpus (USC) comprises 958 different speakers with a total of 105 hours of transcribed audio recordings. To the best of our knowledge, this is the first open-source Uzbek speech corpus dedicated to the ASR task. To ensure high quality, the USC has been manually checked by native speakers. We first describe the design and development procedures of the USC, and then explain the conducted ASR experiments in detail. The experimental results demonstrate promising results for the applicability of the USC for ASR. Specifically, 18.1% and 17.4% word error rates were achieved on the validation and test sets, respectively. To enable experiment reproducibility, we share the USC dataset, pre-trained models, and training recipes in our GitHub repository.
Subjective evaluations are critical for assessing the perceptual realism of sounds in audio-synthesis driven technologies like augmented and virtual reality. However, they are challenging to set up, fatiguing for users, and expensive. In this work, we tackle the problem of capturing the perceptual characteristics of localizing sounds. Specifically, we propose a framework for building a general purpose quality metric to assess spatial localization differences between two binaural recordings. We model localization similarity by utilizing activation-level distances from deep networks trained for direction of arrival (DOA) estimation. Our proposed metric (DPLM) outperforms baseline metrics on correlation with subjective ratings on a diverse set of datasets, even without the benefit of any human-labeled training data.
We address the problem of privately communicating audio messages to multiple listeners in a reverberant room using a set of loudspeakers. We propose two methods based on emitting noise. In the first method, the loudspeakers emit noise signals that are appropriately filtered so that after echoing along multiple paths in the room, they sum up and descramble to yield distinct meaningful audio messages only at specific focusing spots, while being incoherent everywhere else. In the second method, adapted from wireless communications, we project noise signals onto the nullspace of the MIMO channel matrix between the loudspeakers and listeners. Loudspeakers reproduce a sum of the projected noise signals and intended messages. Again because of echoes, the MIMO nullspace changes across different locations in the room. Thus, the listeners at focusing spots hear intended messages, while the acoustic channel of an eavesdropper at any other location is jammed. We show, using both numerical and real experiments, that with a small number of speakers and a few impulse response measurements, audio messages can indeed be communicated to a set of listeners while ensuring negligible intelligibility elsewhere.
In recent years, wsj0-2mix has become the reference dataset for single-channel speech separation. Most deep learning-based speech separation models today are benchmarked on it. However, recent studies have shown important performance drops when models trained on wsj0-2mix are evaluated on other, similar datasets. To address this generalization issue, we created LibriMix, an open-source alternative to wsj0-2mix, and to its noisy extension, WHAM!. Based on LibriSpeech, LibriMix consists of two- or three-speaker mixtures combined with ambient noise samples from WHAM!. Using Conv-TasNet, we achieve competitive performance on all LibriM
Audio-visual speech recognition (AVSR) can effectively and significantly improve the recognition rates of small-vocabulary systems, compared to their audio-only counterparts. For large-vocabulary systems, however, there are still many difficulties, such as unsatisfactory video recognition accuracies, that make it hard to improve over audio-only baselines. In this paper, we specifically consider such scenarios, focusing on the large-vocabulary task of the LRS2 database, where audio-only performance is far superior to video-only accuracies, making this an interesting and challenging setup for multi-modal integration. To address the inherent difficulties, we propose a new fusion strategy: a recurrent integration network is trained to fuse the state posteriors of multiple single-modality models, guided by a set of model-based and signal-based stream reliability measures. During decoding, this network is used for stream integration within a hybrid recognizer, where it can thus cope with the time-variant reliability and information content of its multiple feature inputs. We compare the results with end-to-end AVSR systems as well as with competitive hybrid baseline models, finding that the new fusion strategy shows superior results, on average even outperforming oracle dynamic stream weighting, which has so far marked the -- realistically unachievable -- upper bound for standard stream weighting. Even though the pure lipreading performance is low, audio-visual integration is helpful under all -- clean, noisy, and reverberant -- conditions. On average, the new system achieves a relative word error rate reduction of 42.18% compared to the audio-only model, pointing at a high effectiveness of the proposed integration approach.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا