No Arabic abstract
Topological physics and strong electron-electron correlations in quantum materials are typically studied independently. However, there have been rapid recent developments in quantum materials in which topological phase transitions emerge when the single-particle band structure is modified by strong interactions. We here demonstrate that the room-temperature phase of (TaSe$_4$)$_2$I is a Weyl semimetal with 24 pairs of Weyl nodes. Owing to its quasi-1D structure, (TaSe$_4$)$_2$I hosts an established CDW instability just below room temperature. Using X-ray diffraction, angle-resolved photoemission spectroscopy, and first-principles calculations, we find that the CDW in (TaSe$_4$)$_2$I couples the bulk Weyl points and opens a band gap. The correlation-driven topological phase transition in (TaSe$_4$)$_2$I provides a route towards observing condensed-matter realizations of axion electrodynamics in the gapped regime, topological chiral response effects in the semimetallic phase, and represents an avenue for exploring the interplay of correlations and topology in a solid-state material.
Despite the progress made in successful prediction of many classes of weakly-correlated topological materials, it is not clear how a topological order can emerge from interacting orders and whether or not a charge ordered topological state can exist in a two-dimensional (2D) material. Here, through first-principles modeling and analysis, we identify a 2$times$2 charge density wave (CDW) phase in monolayer $2H$-NbSe$_2$ that harbors coexisting quantum spin Hall (QSH) insulator, topological crystalline insulator (TCI) and topological nodal line (TNL) semimetal states. The topology in monolayer NbSe$_2$ is driven by the formation of the CDW and the associated symmetry-breaking periodic lattice distortions and not via a pre-existing topology. Our finding of an emergent triple-topological state in monolayer $2H$-NbSe$_2$ will offer novel possibilities for exploring connections between different topologies and a unique materials platform for controllable CDW-induced topological states for potential applications in quantum electronics and spintronics and Majorana-based quantum computing.
Charge density wave (CDW) order is an emergent quantum phase that is characterized by a periodic lattice distortion and charge density modulation, often present near superconducting transitions. Here we uncover a novel inverted CDW state by using a femtosecond laser to coherently over-drive the unique star-of-David lattice distortion in 1T-TaSe$_2$. We track the signature of this novel CDW state using time- and angle-resolved photoemission spectroscopy and time-dependent density functional theory, and validate that it is associated with a unique lattice and charge arrangement never before realized. The dynamic electronic structure further reveals its novel properties, that are characterized by an increased density of states near the Fermi level, high metallicity, and altered electron-phonon couplings. Our results demonstrate how ultrafast lasers can be used to create unique states in materials, by manipulating charge-lattice orders and couplings.
LaAgSb$_{2}$ is a rare material, which offers the opportunity to investigate the complex interplay between charge density wave (CDW) ordering and topology protected electronic band structure. As both of these phenomena are governed by the structural symmetries, a comprehensive study of the lattice dynamics is highly desirable. In this report, we present the results of temperature and pressure dependent Raman spectroscopy and x-ray diffraction in single crystalline LaAgSb$_{2}$. Our results confirm that Raman spectroscopy is a highly sensitive tool to probe CDW ordering phenomenon, particularly the low-temperature second CDW transition in LaAgSb$_{2}$, which appears as a very weak anomaly in most experiments. The crystal orientation-dependent measurements provide the evolution of Raman modes with crystallographic symmetries and can be further studied through group symmetry analysis. The low-temperature x-ray diffraction data show the emergence of structural modulations corresponding to the CDW instability. The combined high-pressure Raman spectroscopy and synchrotron x-ray diffraction reveal multiple structural phase transitions through lowering of crystalline symmetries, which are also expected to lead to electronic topological transitions.
The transition metal dichalcogenide $1T$-TiSe$_2$ is a quasi-two-dimensional layered material with a phase transition towards a commensurate charge density wave (CDW) at a critical temperature T$_{c}approx 200$K. The relationship between the origin of the CDW instability and the semimetallic or semiconducting character of the normal state, i.e., with the non-reconstructed Fermi surface topology, remains elusive. By combining angle-resolved photoemission spectroscopy (ARPES), scanning tunneling microscopy (STM), and density functional theory (DFT) calculations, we investigate $1T$-TiSe$_{2-x}$S$_x$ single crystals. Using STM, we first show that the long-range phase coherent CDW state is stable against S substitutions with concentrations at least up to $x=0.34$. The ARPES measurements then reveal a slow but continuous decrease of the overlap between the electron and hole ($e$-$h$) bands of the semimetallic normal-state well reproduced by DFT and related to slight reductions of both the CDW order parameter and $T_c$. Our DFT calculations further predict a semimetal-to-semiconductor transition of the normal state at a higher critical S concentration of $x_c$=0.9 $pm$0.1, that coincides with a melted CDW state in TiSeS as measured with STM. Finally, we rationalize the $x$-dependence of the $e$-$h$ band overlap in terms of isovalent substitution-induced competing chemical pressure and charge localization effects. Our study highlights the key role of the $e$-$h$ band overlap for the CDW instability.
When electrons in a solid are excited with light, they can alter the free energy landscape and access phases of matter that are beyond reach in thermal equilibrium. This accessibility becomes of vast importance in the presence of phase competition, when one state of matter is preferred over another by only a small energy scale that, in principle, is surmountable by light. Here, we study a layered compound, LaTe$_3$, where a small in-plane (a-c plane) lattice anisotropy results in a unidirectional charge density wave (CDW) along the c-axis. Using ultrafast electron diffraction, we find that after photoexcitation, the CDW along the c-axis is weakened and subsequently, a different competing CDW along the a-axis emerges. The timescales characterizing the relaxation of this new CDW and the reestablishment of the original CDW are nearly identical, which points towards a strong competition between the two orders. The new density wave represents a transient non-equilibrium phase of matter with no equilibrium counterpart, and this study thus provides a framework for unleashing similar states of matter that are trapped under equilibrium conditions.