We extend the doubly degenerate Cahn-Hilliard (DDCH) models for isotropic surface diffusion, which yield more accurate approximations than classical degenerate Cahn-Hilliard (DCH) models, to the anisotropic case. We consider both weak and strong anisotropies and demonstrate the capabilities of the approach for these cases numerically. The proposed model provides a variational and energy dissipative approach for anisotropic surface diffusion, enabling large scale simulations with material-specific parameters.
We discuss two doubly degenerate Cahn-Hilliard (DDCH) models for isotropic surface diffusion. Degeneracy is introduced in both the mobility function and a restriction function associated to the chemical potential. Our computational results suggest that the restriction functions yield more accurate approximations of surface diffusion. We consider a slight generalization of a model that has appeared before, which is non-variational, meaning there is no clear energy that is dissipated along the solution trajectories. We also introduce a new variational and, more precisely, energy dissipative model, which can be related to the generalized non-variational model. For both models we use formal matched asymptotics to show the convergence to the sharp interface limit of surface diffusion.
We propose an energy-stable parametric finite element method (ES-PFEM) to discretize the motion of a closed curve under surface diffusion with an anisotropic surface energy $gamma(theta)$ -- anisotropic surface diffusion -- in two dimensions, while $theta$ is the angle between the outward unit normal vector and the vertical axis. By introducing a positive definite surface energy (density) matrix $G(theta)$, we present a new and simple variational formulation for the anisotropic surface diffusion and prove that it satisfies area/mass conservation and energy dissipation. The variational problem is discretized in space by the parametric finite element method and area/mass conservation and energy dissipation are established for the semi-discretization. Then the problem is further discretized in time by a (semi-implicit) backward Euler method so that only a linear system is to be solved at each time step for the full-discretization and thus it is efficient. We establish well-posedness of the full-discretization and identify some simple conditions on $gamma(theta)$ such that the full-discretization keeps energy dissipation and thus it is unconditionally energy-stable. Finally the ES-PFEM is applied to simulate solid-state dewetting of thin films with anisotropic surface energies, i.e. the motion of an open curve under anisotropic surface diffusion with proper boundary conditions at the two triple points moving along the horizontal substrate. Numerical results are reported to demonstrate the efficiency and accuracy as well as energy dissipation of the proposed ES-PFEM.
Despite their importance, chemical reactions confined in a low dimensional space are elusive and experimentally intractable. In this work, we report doubly anisotropic, in-plane and out-of-plane, oxidation reactions of two-dimensional crystals, by resolving interface-confined thermal oxidation of a single and multilayer MoS2 supported on silica substrates from their conventional surface reaction. Using optical second-harmonic generation spectroscopy of artificially stacked multilayers, we directly proved that crystallographically oriented triangular oxides (TOs) were formed in the bottommost layer while triangular etch pits (TEs) were generated in the topmost layer and that both structures were terminated with zigzag edges. The formation of the Mo oxide layer at the interface demonstrates that O2 diffuses efficiently through the van der Waals (vdW) gap but not MoO3, which would otherwise sublime. The fact that TOs are several times larger than TEs indicates that oxidation is greatly enhanced when MoS2 is in direct contact with silica substrates, which suggests a catalytic effect. This study indicates that the vdW-bonded interfaces are essentially open to mass transport and can serve as a model system for investigating chemistry in low dimensional spaces.
Almost all materials are anisotropic. In this paper, interface relations of anisotropic elliptic partial differential equations involving discontinuities across interfaces are derived in two and three dimensions. Compared with isotropic cases, the invariance of partial differential equations and the jump conditions under orthogonal coordinates transformation is not valid anymore. A systematic approach to derive the interface relations is established in this paper for anisotropic elliptic interface problems, which can be important for deriving high order accurate numerical methods.
In solid-state physics, energies of crystals are usually computed with a plane-wave discretization of Kohn-Sham equations. However the presence of Coulomb singularities requires the use of large plane-wave cut-offs to produce accurate numerical results. In this paper, an analysis of the plane-wave convergence of the eigenvalues of periodic linear Hamiltonians with Coulomb potentials using the variational projector-augmented wave (VPAW) method is presented. In the VPAW method, an invertible transformation is applied to the original eigenvalue problem, acting locally in balls centered at the singularities. In this setting, a generalized eigenvalue problem needs to be solved using plane-waves. We show that cusps of the eigenfunctions of the VPAW eigenvalue problem at the positions of the nuclei are significantly reduced. These eigenfunctions have however a higher-order derivative discontinuity at the spheres centered at the nuclei. By balancing both sources of error, we show that the VPAW method can drastically improve the plane-wave convergence of the eigenvalues with a minor additional computational cost. Numerical tests are provided confirming the efficiency of the method to treat Coulomb singularities.