Do you want to publish a course? Click here

Wireless Power Transmitter Deployment for Balancing Fairness and Charging Service Quality

47   0   0.0 ( 0 )
 Added by Mingqing Liu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Wireless Energy Transfer (WET) has recently emerged as an appealing solution for power supplying mobile / Internet of Things (IoT) devices. As an enabling WET technology, Resonant Beam Charging (RBC) is well-documented for its long-range, high-power, and safe WiFi-like mobile power supply. To provide high-quality wireless charging services for multi-user in a given region, we formulate a deployment problem of multiple RBC transmitters for balancing the charging fairness and quality of charging service. Based on the RBC transmitters coverage model and receivers charging / discharging model, a Genetic Algorithm (GA)-based and a Particle Swarm Optimization (PSO)-based scheme are put forth to resolve the above issue. Moreover, we present a scheduling method to evaluate the performance of the proposed algorithms. Numerical results corroborate that the optimized deployment schemes outperform uniform and random deployment in 10%-20% charging efficiency improvement.



rate research

Read More

Free positioning of receivers is one of the key requirements for many wireless power transfer (WPT) applications, required from the end-user point of view. However, realization of stable and effective wireless power transfer for freely positioned receivers is technically challenging task because of the requirement of complex control and tuning. In this paper, we propose a concept of automatic receiver tracking and power channeling for multi-transmitter WPT systems using uncoupled transmitter and uncoupled repeaters. Each transmitter-repeater pair forms an independent power transfer channel providing an effective link for the power flow from the transmitter to the receiver. The proposed WPT system is capable of maintaining stable output power with constant high efficiency regardless of the receiver position and without having any active control or tuning. The proposed concept is numerically and experimentally verified by using a four-transmitter WPT system in form of a linear array. The experimental results show that the efficiency of the proposed WPT system can reach 94.5% with a variation less than 2% against the receiver position.
76 - Zhenyu Kang , Changsheng You , 2021
In this letter, we consider an intelligent reflecting surface (IRS)-aided wireless relaying system, where a decode-and-forward relay (R) is employed to forward data from a source (S) to a destination (D), aided by M passive reflecting elements. We consider two practical IRS deployment strategies, namely, single-IRS deployment where all reflecting elements are mounted on one single IRS that is deployed near S, R, or D, and multi-IRS deployment where the reflecting elements are allocated over three separate IRSs which are deployed near S, R, and D, respectively. Under the line-of-sight (LoS) channel model, we characterize the capacity scaling orders with respect to an increasing M for the IRS-aided relay system with different IRS deployment strategies. For single-IRS deployment, we show that deploying the IRS near R achieves the highest capacity as compared to that near S or D. While for multi-IRS deployment, we propose a practical cooperative IRS passive beamforming design which is analytically shown to achieve a larger capacity scaling order than the optimal single-IRS deployment (i.e., near R) when M is sufficiently large. Numerical examples are provided, which validate our theoretical results.
Control of wireless multihop networks, while simultaneously meeting end-to-end mean delay requirements of different flows is a challenging problem. Additionally, distributed computation of control parameters adds to the complexity. Using the notion of discrete review used in fluid control of networks, a distributed algorithm is proposed for control of multihop wireless networks with interference constraints. The algorithm meets end-to-end mean delay requirements by solving an optimization problem at review instants. The optimization incorporates delay requirements as weights in the function being maximized. The weights are dynamic and vary depending on queue length information. The optimization is done in a distributed manner using an incremental gradient ascent algorithm. The stability of the network under the proposed policy is analytically studied and the policy is shown to be throughput optimal.
We consider a multihop wireless system. There are multiple source-destination pairs. The data from a source may have to pass through multiple nodes. We obtain a channel scheduling policy which can guarantee end-to-end mean delay for the different traffic streams. We show the stability of the network for this policy by convergence to a fluid limit. It is intractable to obtain the stationary distribution of this network. Thus we also provide a diffusion approximation for this scheme under heavy traffic. We show that the stationary distribution of the scaled process of the network converges to that of the Brownian limit. This theoretically justifies the performance of the system. We provide simulations to verify our claims.
This paper investigates a full-duplex orthogonal-frequency-division multiple access (OFDMA) based multiple unmanned aerial vehicles (UAVs)-enabled wireless-powered Internet-of-Things (IoT) networks. In this paper, a swarm of UAVs is first deployed in three dimensions (3D) to simultaneously charge all devices, i.e., a downlink (DL) charging period, and then flies to new locations within this area to collect information from scheduled devices in several epochs via OFDMA due to potential limited number of channels available in Narrow Band IoT, i.e., an uplink (UL) communication period. To maximize the UL throughput of IoT devices, we jointly optimizes the UL-and-DL 3D deployment of the UAV swarm, including the device-UAV association, the scheduling order, and the UL-DL time allocation. In particular, the DL energy harvesting (EH) threshold of devices and the UL signal decoding threshold of UAVs are taken into consideration when studying the problem. Besides, both line-of-sight (LoS) and non-line-of-sight (NLoS) channel models are studied depending on the position of sensors and UAVs. The influence of the potential limited channels issue in NB-IoT is also considered by studying the IoT scheduling policy. Two scheduling policies, a near-first (NF) policy and a far-first (FF) policy, are studied. It is shown that the NF scheme outperforms FF scheme in terms of sum throughput maximization; whereas FF scheme outperforms NF scheme in terms of system fairness.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا