No Arabic abstract
Nickelates are a rich class of materials, ranging from insulating magnets to superconductors. But for stoichiometric materials, insulating behavior is the norm, as for most late transition metal oxides. Notable exceptions are the 3D perovskite LaNiO$_3$, an unconventional paramagnetic metal, and the layered Ruddlesden-Popper phases R$_4$Ni$_3$O$_{10}$, (R=La, Pr, Nd). The latter are particularly intriguing because they exhibit an unusual metal-to-metal transition. Here, we demonstrate that this transition results from an incommensurate density wave with both charge and magnetic character that lies intermediate in behavior between the metallic density wave seen in chromium metal and the insulating stripes typically found in layered nickelates. As such, R$_4$Ni$_3$O$_{10}$, which appears to be the first known example of an itinerant spin density wave in a 3d transition metal oxide, represents an important bridge between the paramagnetism of 3D metallic LaNiO$_3$ at higher nickel valence and the polaronic behavior of quasi-2D R$_{2-x}$Sr$_x$NiO$_4$ at lower nickel valence.
High temperature cuprate superconductivity remains a defining problem in condensed matter physics. Among myriad approaches to addressing this problem has been the study of alternative transition metal oxides with similar structures and 3d electron count that are suggested as proxies for cuprate physics. None of these analogs has been superconducting, and few are even metallic. Here, we report that the low-valent, quasi-two-dimensional trilayer compound, Pr4Ni3O8 avoids a charge-stripe ordered phase previously reported for La4Ni3O8, leading to a metallic ground state. By combining x-ray absorption spectroscopy and density functional theory calculations, we further find that metallic Pr4Ni3O8 exhibits a low-spin configuration and significant orbital polarization of the unoccupied eg states with pronounced dx2-y2 character near the Fermi energy, both hallmarks of the cuprate superconductors. Belonging to a regime of 3d electron count found for hole-doped cuprates, Pr4Ni3O8 thus represents one of the closest analogies to cuprates yet reported and a singularly promising candidate for high-Tc superconductivity if appropriately doped.
Spontaneous symmetry breaking constitutes a paradigmatic classification scheme of matter. However, broken symmetry also entails domain degeneracy that often impedes identification of novel low symmetry states. In quantum matter, this is additionally complicated by competing intertwined symmetry breaking orders. A prime example is that of unconventional superconductivity and density-wave orders in doped cuprates in which their respective symmetry relation remains a key question. Using uniaxial pressure as a domain-selective stimulus in combination with x-ray diffraction, we unambiguously reveal that the fundamental symmetry of the charge order in the prototypical cuprate La$_{1.88}$Sr$_{0.12}$CuO$_4$ is characterized by uniaxial stripes. We further demonstrate the direct competition of this stripe order with unconventional superconductivity via magnetic field tuning. The stripy nature of the charge-density-wave state established by our study is a prerequisite for the existence of a superconducting pair-density-wave -- a theoretical proposal that clarifies the interrelation of intertwined quantum phases in unconventional superconductors -- and paves the way for its high-temperature realization.
Trilayer nickelates, which exhibit a high degree of orbital polarization combined with an electron count (d8.67) corresponding to overdoped cuprates, have been identified as a promising candidate platform for achieving high-Tc superconductivity. One such material, La4Ni3O8, undergoes a semiconductor-insulator transition at ~105 K, which was recently shown to arise from the formation of charge stripes. However, an outstanding issue has been the origin of an anomaly in the magnetic susceptibility at the transition and whether it signifies formation of spin stripes akin to single layer nickelates. Here we report single crystal neutron diffraction measurements (both polarized and unpolarized) that establish that the ground state is indeed magnetic. The ordering is modeled as antiferromagnetic spin stripes that are commensurate with the charge stripes, the magnetic ordering occurring in individual trilayers that are essentially uncorrelated along the crystallographic c-axis. Comparison of the charge and spin stripe order parameters reveals that, in contrast to single-layer nickelates such as La2-xSrxNiO4 as well as related quasi-2D oxides including manganites, cobaltates, and cuprates, these orders uniquely appear simultaneously, thus demonstrating a stronger coupling between spin and charge than in these related low-dimensional correlated oxides.
The ability to probe symmetry breaking transitions on their natural time scales is one of the key challenges in nonequilibrium physics. Stripe ordering represents an intriguing type of broken symmetry, where complex interactions result in atomic-scale lines of charge and spin density. Although phonon anomalies and periodic distortions attest the importance of electron-phonon coupling in the formation of stripe phases, a direct time-domain view of vibrational symmetry breaking is lacking. We report experiments that track the transient multi-THz response of the model stripe compound La$_{1.75}$Sr$_{0.25}$NiO$_{4}$, yielding novel insight into its electronic and structural dynamics following an ultrafast optical quench. We find that although electronic carriers are immediately delocalized, the crystal symmetry remains initially frozen - as witnessed by time-delayed suppression of zone-folded Ni-O bending modes acting as a fingerprint of lattice symmetry. Longitudinal and transverse vibrations react with different speeds, indicating a strong directionality and an important role of polar interactions. The hidden complexity of electronic and structural coupling during stripe melting and formation, captured here within a single terahertz spectrum, opens new paths to understanding symmetry breaking dynamics in solids.
We have used resonant x-ray diffraction to develop a detailed description of antiferromagnetic ordering in epitaxial superlattices based on two-unit-cell thick layers of the strongly correlated metal LaNiO3. We also report reference experiments on thin films of PrNiO3 and NdNiO3. The resulting data indicate a spiral state whose polarization plane can be controlled by adjusting the Ni d-orbital occupation via two independent mechanisms: epitaxial strain and quantum confinement of the valence electrons. The data are discussed in the light of recent theoretical predictions.