Do you want to publish a course? Click here

Ultrafast Dynamics of Vibrational Symmetry Breaking in a Charge-ordered Nickelate

127   0   0.0 ( 0 )
 Added by Robert Kaindl A.
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The ability to probe symmetry breaking transitions on their natural time scales is one of the key challenges in nonequilibrium physics. Stripe ordering represents an intriguing type of broken symmetry, where complex interactions result in atomic-scale lines of charge and spin density. Although phonon anomalies and periodic distortions attest the importance of electron-phonon coupling in the formation of stripe phases, a direct time-domain view of vibrational symmetry breaking is lacking. We report experiments that track the transient multi-THz response of the model stripe compound La$_{1.75}$Sr$_{0.25}$NiO$_{4}$, yielding novel insight into its electronic and structural dynamics following an ultrafast optical quench. We find that although electronic carriers are immediately delocalized, the crystal symmetry remains initially frozen - as witnessed by time-delayed suppression of zone-folded Ni-O bending modes acting as a fingerprint of lattice symmetry. Longitudinal and transverse vibrations react with different speeds, indicating a strong directionality and an important role of polar interactions. The hidden complexity of electronic and structural coupling during stripe melting and formation, captured here within a single terahertz spectrum, opens new paths to understanding symmetry breaking dynamics in solids.



rate research

Read More

Charge order is universal among high-T$_c$ cuprates but its relevance to superconductivity is not established. It is widely believed that, while static order competes with superconductivity, dynamic order may be favorable and even contribute to Cooper pairing. We use time-resolved resonant soft x-ray scattering to study the collective dynamics of the charge order in the prototypical cuprate, La$_{2-x}$Ba$_x$CuO$_4$. We find that, at energy scales $0.4$ meV $ lesssim omega lesssim 2$ meV, the excitations are overdamped and propagate via Brownian-like diffusion. At energy scales below 0.4 meV the charge order exhibits dynamic critical scaling, displaying universal behavior arising from propagation of topological defects. Our study implies that charge order is dynamic, so may participate tangibly in superconductivity.
Trilayer nickelates, which exhibit a high degree of orbital polarization combined with an electron count (d8.67) corresponding to overdoped cuprates, have been identified as a promising candidate platform for achieving high-Tc superconductivity. One such material, La4Ni3O8, undergoes a semiconductor-insulator transition at ~105 K, which was recently shown to arise from the formation of charge stripes. However, an outstanding issue has been the origin of an anomaly in the magnetic susceptibility at the transition and whether it signifies formation of spin stripes akin to single layer nickelates. Here we report single crystal neutron diffraction measurements (both polarized and unpolarized) that establish that the ground state is indeed magnetic. The ordering is modeled as antiferromagnetic spin stripes that are commensurate with the charge stripes, the magnetic ordering occurring in individual trilayers that are essentially uncorrelated along the crystallographic c-axis. Comparison of the charge and spin stripe order parameters reveals that, in contrast to single-layer nickelates such as La2-xSrxNiO4 as well as related quasi-2D oxides including manganites, cobaltates, and cuprates, these orders uniquely appear simultaneously, thus demonstrating a stronger coupling between spin and charge than in these related low-dimensional correlated oxides.
335 - T. Shang , G. M. Pang , C. Baines 2018
The noncentrosymmetric superconductor Re$_{24}$Ti$_{5}$, a time-reversal symmetry (TRS) breaking candidate with $T_c = 6$,K, was studied by means of muon-spin rotation/relaxation ($mu$SR) and tunnel-diode oscillator (TDO) techniques. At a macroscopic level, its bulk superconductivity was investigated via electrical resistivity, magnetic susceptibility, and heat capacity measurements. The low-temperature penetration depth, superfluid density and electronic heat capacity all evidence an $s$-wave coupling with an enhanced superconducting gap. The spontaneous magnetic fields revealed by zero-field $mu$SR below $T_c$ indicate a time-reversal symmetry breaking and thus the unconventional nature of superconductivity in Re$_{24}$Ti$_{5}$. The concomitant occurrence of TRS breaking also in the isostructural Re$_6$(Zr,Hf) compounds, hints at its common origin in this superconducting family and that an enhanced spin-orbital coupling does not affect pairing symmetry.
We use two recently proposed methods to calculate exactly the spectrum of two spin-${1over 2}$ charge carriers moving in a ferromagnetic background, at zero temperature, for three types of models. By comparing the low-energy states in both the one-carrier and the two-carrier sectors, we analyze whether complex models with multiple sublattices can be accurately described by simpler Hamiltonians, such as one-band models. We find that while this is possible in the one-particle sector, the magnon-mediated interactions which are key to properly describe the two-carrier states of the complex model are not reproduced by the simpler models. We argue that this is true not just for ferromagnetic, but also for antiferromagnetic backgrounds. Our results question the ability of simple one-band models to accurately describe the low-energy physics of cuprate layers.
130 - M. P. M. Dean , Yue Cao , X. Liu 2016
Measuring how the magnetic correlations throughout the Brillouin zone evolve in a Mott insulator as charges are introduced dramatically improved our understanding of the pseudogap, non-Fermi liquids and high $T_C$ superconductivity. Recently, photoexcitation has been used to induce similarly exotic states transiently. However, understanding how these states emerge has been limited because of a lack of available probes of magnetic correlations in the time domain, which hinders further investigation of how light can be used to control the properties of solids. Here we implement magnetic resonant inelastic X-ray scattering at a free electron laser, and directly determine the magnetization dynamics after photo-doping the Mott insulator Sr$_2$IrO$_4$. We find that the non-equilibrium state 2~ps after the excitation has strongly suppressed long-range magnetic order, but hosts photo-carriers that induce strong, non-thermal magnetic correlations. The magnetism recovers its two-dimensional (2D) in-plane Neel correlations on a timescale of a few ps, while the three-dimensional (3D) long-range magnetic order restores over a far longer, fluence-dependent timescale of a few hundred ps. The dramatic difference in these two timescales, implies that characterizing the dimensionality of magnetic correlations will be vital in our efforts to understand ultrafast magnetic dynamics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا