Do you want to publish a course? Click here

Parameter Selection Methods in Inverse Problem Formulation

68   0   0.0 ( 0 )
 Added by Ariel Cintron-Arias
 Publication date 2020
  fields Biology
and research's language is English




Ask ChatGPT about the research

We discuss methods for {em a priori} selection of parameters to be estimated in inverse problem formulations (such as Maximum Likelihood, Ordinary and Generalized Least Squares) for dynamical systems with numerous state variables and an even larger number of parameters. We illustrate the ideas with an in-host model for HIV dynamics which has been successfully validated with clinical data and used for prediction.



rate research

Read More

A resource selection function is a model of the likelihood that an available spatial unit will be used by an animal, given its resource value. But how do we appropriately define availability? Step-selection analysis deals with this problem at the scale of the observed positional data, by matching each used step (connecting two consecutive observed positions of the animal) with a set of available steps randomly sampled from a distribution of observed steps or their characteristics. Here we present a simple extension to this approach, termed integrated step-selection analysis (iSSA), which relaxes the implicit assumption that observed movement attributes (i.e. velocities and their temporal autocorrelations) are independent of resource selection. Instead, iSSA relies on simultaneously estimating movement and resource-selection parameters, thus allowing simple likelihood-based inference of resource selection within a mechanistic movement model. We provide theoretical underpinning of iSSA, as well as practical guidelines to its implementation. Using computer simulations, we evaluate the inferential and predictive capacity of iSSA compared to currently used methods. Our work demonstrates the utility of iSSA as a general, flexible and user-friendly approach for both evaluating a variety of ecological hypotheses, and predicting future ecological patterns.
To support and guide an extensive experimental research into systems biology of signaling pathways, increasingly more mechanistic models are being developed with hopes of gaining further insight into biological processes. In order to analyse these models, computational and statistical techniques are needed to estimate the unknown kinetic parameters. This chapter reviews methods from frequentist and Bayesian statistics for estimation of parameters and for choosing which model is best for modeling the underlying system. Approximate Bayesian Computation (ABC) techniques are introduced and employed to explore different hypothesis about the JAK-STAT signaling pathway.
Bayesian inference methods rely on numerical algorithms for both model selection and parameter inference. In general, these algorithms require a high computational effort to yield reliable estimates. One of the major challenges in phylogenetics is the estimation of the marginal likelihood. This quantity is commonly used for comparing different evolutionary models, but its calculation, even for simple models, incurs high computational cost. Another interesting challenge relates to the estimation of the posterior distribution. Often, long Markov chains are required to get sufficient samples to carry out parameter inference, especially for tree distributions. In general, these problems are addressed separately by using different procedures. Nested sampling (NS) is a Bayesian computation algorithm which provides the means to estimate marginal likelihoods together with their uncertainties, and to sample from the posterior distribution at no extra cost. The methods currently used in phylogenetics for marginal likelihood estimation lack in practicality due to their dependence on many tuning parameters and the inability of most implementations to provide a direct way to calculate the uncertainties associated with the estimates. To address these issues, we introduce NS to phylogenetics. Its performance is assessed under different scenarios and compared to established methods. We conclude that NS is a competitive and attractive algorithm for phylogenetic inference. An implementation is available as a package for BEAST 2 under the LGPL licence, accessible at https://github.com/BEAST2-Dev/nested-sampling.
The COVID-19 pandemic, caused by the coronavirus SARS-CoV-2, has led to a wide range of non-pharmaceutical interventions being implemented around the world to curb transmission. However, the economic and social costs of some of these measures, especially lockdowns, has been high. An alternative and widely discussed public health strategy for the COVID-19 pandemic would have been to shield those most vulnerable to COVID-19, while allowing infection to spread among lower risk individuals with the aim of reaching herd immunity. Here we retrospectively explore the effectiveness of this strategy, showing that even under the unrealistic assumption of perfect shielding, hospitals would have been rapidly overwhelmed with many avoidable deaths among lower risk individuals. Crucially, even a small (20%) reduction in the effectiveness of shielding would have likely led to a large increase (>150%) in the number of deaths compared to perfect shielding. Our findings demonstrate that shielding the vulnerable while allowing infections to spread among the wider population would not have been a viable public health strategy for COVID-19, and is unlikely to be effective for future pandemics.
By equipping a previously reported dynamic causal model of COVID-19 with an isolation state, we modelled the effects of self-isolation consequent on tracking and tracing. Specifically, we included a quarantine or isolation state occupied by people who believe they might be infected but are asymptomatic, and only leave if they test negative. We recovered maximum posteriori estimates of the model parameters using time series of new cases, daily deaths, and tests for the UK. These parameters were used to simulate the trajectory of the outbreak in the UK over an 18-month period. Several clear-cut conclusions emerged from these simulations. For example, under plausible (graded) relaxations of social distancing, a rebound of infections within weeks is unlikely. The emergence of a later second wave depends almost exclusively on the rate at which we lose immunity, inherited from the first wave. There exists no testing strategy that can attenuate mortality rates, other than by deferring or delaying a second wave. A sufficiently powerful tracking and tracing policy--implemented at the time of writing (10th May 2020)--will defer any second wave beyond a time horizon of 18 months. Crucially, this deferment is within current testing capabilities (requiring an efficacy of tracing and tracking of about 20% of asymptomatic infected cases, with less than 50,000 tests per day). These conclusions are based upon a dynamic causal model for which we provide some construct and face validation, using a comparative analysis of the United Kingdom and Germany, supplemented with recent serological studies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا