No Arabic abstract
From $1310.6times10^{6}$ $J/psi$ and $448.1times10^{6}$ $psi(3686)$ events collected with the BESIII experiment, we report the first observation of $Sigma^{+}$ and $bar{Sigma}^{-}$ spin polarization in $e^+e^-rightarrow J/psi (psi(3686)) rightarrow Sigma^{+} bar{Sigma}^{-}$ decays. The relative phases of the form factors $DeltaPhi$ have been measured to be $(-15.5pm0.7pm0.5)^{circ}$ and $(21.7pm4.0pm0.8)^{circ}$ with $J/psi$ and $psi(3686)$ data, respectively. The non-zero value of $DeltaPhi$ allows for a direct and simultaneous measurement of the decay asymmetry parameters of $Sigma^{+}rightarrow p pi^{0}~(alpha_0 = -0.998pm0.037pm0.009)$ and $bar{Sigma}^{-}rightarrow bar{p} pi^{0}~(bar{alpha}_0 = 0.990pm0.037pm0.011)$, the latter value being determined for the first time. The average decay asymmetry, $(alpha_{0} - bar{alpha}_{0})/2$, is calculated to be $-0.994pm0.004pm0.002$. The CP asymmetry $A_{rm CP,Sigma} = (alpha_0 + bar{alpha}_0)/(alpha_0 - bar{alpha}_0) = -0.004pm0.037pm0.010$ is extracted for the first time, and is found to be consistent with CP conservation.
Using $1310.6times10^{6}$ $J/psi$ and $448.1times10^{6}$ $psi(3686)$ events collected with the BESIII detector, the branching fractions of $J/psi$ and $psi(3686)$ decays to $Sigma^{+}overline{Sigma}^{-}$ are measured to be $(10.61 pm 0.04 pm 0.36) times 10^{-4}$ and $(2.52 pm 0.04 pm 0.09) times 10^{-4}$, respectively. In addition, the ratio of $mathcal{B}(psi(3686) rightarrow Sigma^{+}overline{Sigma}^{-})/mathcal{B}(J/psi rightarrow Sigma^{+}overline{Sigma}^{-})$ is determined to be $(23.8 pm 1.1)%$ which violates the $12%$ rule.
Using $1310.6times10^6$ $J/psi$ and $447.9times10^6$ $psi(3686)$ events collected with the BESIII detector at the BEPCII $e^{+}e^{-}$ collider, the branching fractions and the angular distributions of $J/psi$ and $psi(3686)$ decays to $Lambdabar{Lambda}$ and $Sigma^0bar{Sigma}^0$ final states are measured. The branching fractions are in agreement with, and much more precise than, the averages of previously published results. The polar angular distributions of $psi(3686)$ decays are measured for the first time, while those of $J/psi$ decays are measured with much improved precision. In addition, the ratios of branching fractions $frac{mathcal{B}(psi(3686)toLambdabar{Lambda})}{mathcal{B}(J/psitoLambdabar{Lambda})}$ and $frac{mathcal{B}(psi(3686)toSigma^0bar{Sigma}^0)}{mathcal{B}(J/psitoSigma^0bar{Sigma}^0)}$ are determined to test the 12% rule.
Using the data samples of $1.31times 10^9$ $J/psi$ events and $4.48times 10^8$ $psi(3686)$ events collected with the BESIII detector, partial wave analyses on the decays $J/psi$ and $psi(3686) to pi^+pi^-eta^prime$ are performed with a relativistic covariant tensor amplitude approach. The dominant contribution is found to be $J/psi$ and $psi(3686)$ decays to $rhoeta^prime$. In the $J/psi$ decay, the branching fraction ${cal B}(J/psito rhoeta^prime)$ is determined to be $(7.90pm0.19(mathrm{stat})pm0.49(mathrm{sys}))times 10^{-5}$. Two solutions are found in the $psi(3686)$ decay, and the corresponding branching fraction ${cal B}(psi(3686)to rhoeta^prime)$ is $(1.02pm0.11(mathrm{stat})pm0.24(mathrm{sys}))times 10^{-5}$ for the case of constructive interference, and $(5.69pm1.28(mathrm{stat})pm2.36(mathrm{sys}))times 10^{-6}$ for destructive interference. As a consequence, the ratios of branching fractions between $psi(3686)$ and $J/psi$ decays to $rhoeta^prime$ are calculated to be $(12.9pm1.4(mathrm{stat})pm3.1(mathrm{sys}))$% and $(7.2pm1.6(mathrm{stat})pm3.0(mathrm{sys}))$%, respectively. We also determine the inclusive branching fractions of $J/psi$ and $psi(3686)$ decays to $pi^+pi^-eta^prime$ to be $(1.36pm0.02(mathrm{stat})pm0.08(mathrm{sys}))times 10^{-4}$ and $(1.51pm0.14(mathrm{stat})pm 0.23(mathrm{sys}))times 10^{-5}$, respectively.
Motivated by a recent successful dynamical explanation for the newly observed fully-charm structure $X(6900)$ in the mass spectrum of di-$J/psi$ by LHCb [J.~Z.~Wang textit{et al.} arXiv:2008.07430], in this work, we extend the same dynamical rescattering mechanism to predict the line shape of more potential fully-heavy structures in the invariant mass spectrum of $J/psi psi(3686)$, $J/psi psi(3770)$, $psi(3686) psi(3686)$, and $J/psi Upsilon(1S)$ at high energy proton-proton collisions, whose verification in experiments should be helpful to further clarify the nature of $X(6900)$. The above final states of vector heavy quarkonia can be experimentally reconstructed more effectively by a $mu^+mu^-$ pair in the muon detector compared with $Qbar{Q}$ meson with other quantum numbers. Furthermore, the corresponding peak mass positions of each of predicted fully-heavy structures are also given. Our theoretical studies here could provide some valuable information for the future measurement proposals of LHCb and CMS, especially based on the accumulated data after completing Run III of LHC in the near future.