Do you want to publish a course? Click here

Forming a highly active, homogeneously alloyed AuPt co-catalyst decoration on O2 nanotubes directly during anodic growth

60   0   0.0 ( 0 )
 Added by Patrik Schmuki
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Au and Pt do not form homogeneous bulk alloys as they are thermodynamically not miscible. However, we show that anodic TiO$_2$ nanotubes (NTs) can in-situ be uniformly decorated with homogeneous AuPt alloy nanoparticles (NPs) during their anodic growth. For this, a metallic Ti substrate containing low amounts of dissolved Au (0.1 at%) and Pt (0.1 at%) is used for anodizing. The matrix metal (Ti) is converted to oxide while at the oxide/metal interface direct noble metal particle formation and alloying of Au and Pt takes place; continuously these particles are then picked up by the growing nanotube wall. In our experiments the AuPt alloy NPs have an average size of 4.2 nm and, at the end of the anodic process, are regularly dispersed over the TiO$_2$ nanotubes. These alloyed AuPt particles act as excellent co-catalyst in photocatalytic H2 generation - with a H2 production of 12.04 {mu}L h-1 under solar light. This represents a strongly enhanced activity as compared with TiO$_2$ NTs decorated with monometallic particles of Au (7 {mu}L h-1) or Pt (9.96 {mu}L h-1).



rate research

Read More

Au nanoparticles at the TiO$_2$ surface can enhance the photocatalytic H$_2$ generation performances owing to their electron transfer co-catalytic ability. Key to maximize the co-catalytic effect is a fine control over Au nanoparticle size and placement on the photocatalyst, in relation to parameters such as the TiO$_2$ morphology, illumination wavelength and pathway, and light penetration depth in the photocatalyst. Here we present an approach for site-selective intrinsic-decoration of anodic TiO$_2$ nanotubes (TNs) with Au nanoparticles: we produce, by Ti and Au co-sputtering, Ti-Au alloy layers that feature compositional gradients across their thickness; these layers, when anodized under self-ordering electrochemical conditions, can form Au-decorated TNs where the Au nanoparticle density and placement vary according to the Au concentration profile in the metal alloy substrates. Our results suggest that, the Au co-catalyst placement strongly affects the photocatalytic H$_2$ evolution performance of the TNs layers. We demonstrate that, when growing Au-decorated TNs, the use of Ti-Au substrates with a suitable Au compositional gradient can lead to higher H$_2$ evolution rates compared to TNs classically grown with a homogenous co-catalyst decoration. As a side effect, a proper placement of the co-catalyst nanoparticles allows for reducing the amount of noble metal without dumping the H$_2$ evolution activity.
By sequential feeding of catalyst materials, it is revealed that the active growth sites are at the bottom of the carbon nanotubes (CNTs), and that catalyst particles are constantly encapsulated into nanotubes from the bottom. This gives a better insight into the mechanism of CNT formation and on ways to control the growth process. CNTs encapsulated with different materials should enable the study of their electronic or magnetic properties, with potential applications as building blocks for nanoelectronics and as fillers in composites for electromagenetic shielding.
115 - Lei Tang , Tao Li , Yuting Luo 2020
Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have attracted great attention due to their physical and chemical properties that make them promising in electronics and optoelectronics. Because of the difficulties in controlling concentrations of solid precursors and spatially non-uniform growth dynamics, it is challenging to grow wafer-scale 2D TMDCs with good uniformity and reproducibility so far, which significantly hinders their practical use. Here we report a vertical chemical vapor deposition (VCVD) design to grow monolayer TMDCs with a uniform density and high quality over the whole wafer, and with excellent reproducibility. The use of such VCVD design can easily control the three key growth parameters of precursor concentration, gas flow and temperature, which cannot be done in currently widely-used horizontal CVD system. Statistical results show that VCVD-grown monolayer TMDCs including MoS2 and WS2 are of high uniformity and quality on substrates over centimeter size. We also fabricated multiple van der Waals heterostructures by the one-step transfer of VCVD-grown TMDC samples, owning to its good uniformity. This work opens a way to grow 2D materials with high uniformity and reproducibility on the wafer scale, which can be used for the scalable fabrication of 2D materials and their heterostructures.
Electrochemical exfoliation is one of the most promising methods for scalable production of graphene. However, limited understanding of its Raman spectrum as well as lack of measurement standards for graphene strongly limit its industrial applications. In this work we show a systematic study of the Raman spectrum of electrochemically exfoliated graphene, produced using different electrolytes and different types of solvents in varying amounts. We demonstrate that no information on the thickness can be extracted from the shape of the 2D peak as this type of graphene is defective. Furthermore, the number of defects and the uniformity of the samples strongly depend on the experimental conditions, including post-processing. Under specific conditions, formation of short conductive trans-polyacetylene chains has been observed. Our Raman analysis provides guidance for the community on how to get information on defects coming from electrolyte, temperature and other experimental conditions, by making Raman spectroscopy a powerful metrology tool.
We have investigated in detail the growth dynamics of gold nanorods with various aspect ratios in different surrounding environments. Surprisingly, a blue shift in the temporal evolution of colloidal gold nanorods in aqueous medium has been observed during the growth of nanorods by UV visible absorption spectroscopy. The longitudinal surface plasmon resonance peak evolves as soon as the nanorods start to grow from spheres, and the system undergoes a blue shift in the absorption spectra. Although a red-shift is expected as a natural phenomenon during the growth process of all nanosystems, our blue shift observation is regarded as a consequence of competition between the parameters of growth solution and actual growth of nanorods. The growth of nanorods contributes to the red-shift which is hidden under the dominating contribution of the growth solution responsible for the observed massive blue shift.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا