Do you want to publish a course? Click here

Encapsulation, compensation, and substitution of catalyst particles during continuous growth of carbon nanotubes

148   0   0.0 ( 0 )
 Added by Rong Xiang Mr
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

By sequential feeding of catalyst materials, it is revealed that the active growth sites are at the bottom of the carbon nanotubes (CNTs), and that catalyst particles are constantly encapsulated into nanotubes from the bottom. This gives a better insight into the mechanism of CNT formation and on ways to control the growth process. CNTs encapsulated with different materials should enable the study of their electronic or magnetic properties, with potential applications as building blocks for nanoelectronics and as fillers in composites for electromagenetic shielding.



rate research

Read More

We report on the synthesis of carbon nanotubes on quasicrystalline alloys. Aligned multiwalled carbon nanotubes (MWNTs) on the conducting faces of decagonal quasicrystals were synthesized using floating catalyst chemical vapor deposition. The alignment of the nanotubes was found perpendicular to the decagonal faces of the quasicrystals. A comparison between the growth and tube quality has also been made between tubes grown on various quasicrystalline and SiO2 substrates. While a significant MWNT growth was observed on decagonal quasicrystalline substrate, there was no significant growth observed on icosahedral quasicrystalline substrate. Raman spectroscopy and high resolution transmission electron microscopy (HRTEM) results show high crystalline nature of the nanotubes. Presence of continuous iron filled core in the nanotubes grown on these substrates was also observed, which is typically not seen in MWNTs grown using similar process on silicon and/or silicon dioxide substrates. The study has important implications for understanding the growth mechanism of MWNTs on conducting substrates which have potential applications as heat sinks.
Double-walled carbon nanotubes (DWCNTs) combined the advantages of multi-walled (MW-) and single-walled (SW-) CNTs can be obtained by transforming the precursors (e.g. fullerene, ferrocene) into thin inner CNTs inside SWCNTs as templates. However, this method is limited since the DWCNT yield is strongly influenced by the filling efficiency (depending on the type of the filled molecules), opening and cutting the SWCNTs, and the diameter of the host SWCNTs. Therefore, it cannot be applied to all types of SWCNT templates. Here we show a universal route to synthesize ultra-thin DWCNTs via making SWCNTs stable at high temperature in vacuum. This method applies to different types of SWCNTs including metallicity-sorted ones without using any precursors since the carbon sources were from the reconstructed SWCNTs and the residue carbons. The resulting DWCNTs are with high quality and the yield of inner tubes is comparable to/higher than that of the DWCNTs made from the transformation of ferrocene/fullerene peapods.
The Raman response of new structures grown after filling SWCNTs with ferrocene and transformation at moderate high temperatures is demonstrated to be very strong, even stronger than the response from the tubes. Transmission electron microscopy demonstrates that the new objects are flat and exhibit a structure similar to short fragments of nanoribbons. The growth process is controlled by two different activation energies for low and high transformation temperatures, respectively. Immediately after filling Raman pattern from a precursor molecule are detected. Two different types of nanoribbons were identified by selecting special laser energies for the Raman excitation. These ribbons have the signature of quaterrylene and terrylene, respectively.
The field electron emission from the single-walled carbon nanotubes with their open ends terminated by -BH, -NH, and -O has been simulated. The apex-vacuum barrier and the emission current have been calculated. It has been found that -BH and -NH suppress the apex-vacuum barrier significantly and lead to higher emission current in contrast to the -O terminated structure in the same applied field. The calculated binding energy implies that the carbon nanotubes terminated with -BH and -NH are more stable than those saturated by oxygen atoms or by hydrogen atoms.
In this work we investigated the encapsulation of C$_20$ and C$_30$ fullerenes into semiconducting carbon nanotubes to study the possibility of bandgap engineering in such systems. Classical molecular dynamics simulations coupled to tight-binding calculations were used to determine the conformational and electronic properties of carbon nanotube supercells containing up to 12 fullerenes. We have observed that C$_20$ fullerenes behave similarly to a p-type dopant while C$_30$ ones work as n-type ones. For larger diameter nanotubes, where fullerene patterns start to differ from the linear arrangements (peapods), the doping features are preserved for both fullerenes, but local disorder plays an important role and significantly alters the electronic structure. The combined incorporation of both fullerene types (hybrid encapsulation) into the same nanotube leads to a behavior similar to that found in electronic junctions in Silicon-based electronic devices. These aspects can be exploited in the design of nanoelectronic devices using semiconducting carbon nanotubes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا