No Arabic abstract
We discuss aspects of magnetically charged black holes in the Standard Model. For a range of charges, we argue that the electroweak symmetry is restored in the near horizon region. The extent of this phase can be macroscopic. If $Q$ is the integer magnetic charge, the fermions lead to order $Q$ massless two dimensional fermions moving along the magnetic field lines. These greatly enhance Hawking radiation effects.
In five-dimensional minimal supergravity, there are spherical black holes with nontrivial topology outside the horizon which have the same conserved charges at infinity as the BMPV solution. We show that some of these black holes have greater entropy than the BMPV solution. These spacetimes are all asymptotically flat, stationary, and supersymmetric. We also show that there is a limit in which the black hole shrinks to zero size and the solution becomes a nonsingular bubbling geometry. Thus, these solutions provide explicit analytic examples of placing black holes inside solitons.
Properties of the rotating Kerr-Newman black hole solution allow to relate it with spinning particles. Singularity of black hole (BH) can be regularized by a metric deformation. In this case, as a consequence of the Einstein equations, a material source appears in the form of a relativistically rotating superconducting disk which replaces the former singular region. We show a relation of the BH regularization with confinement formation. By regularization, a phase transition occurs near the core of a charged black hole solution: from external electrovacuum to an internal superconducting state of matter. We discuss two models of such a kind, which demonstrate the appearance of a baglike structure and a mechanism of confinement based on dual Diracs electrodynamics. First one is an approximate solution based on a supersymmetric charged domain wall, and second is an exact solution based on nonlinear electrodynamics.
The evolution of black holes in confining boxes is interesting for a number of reasons, particularly because it mimics the global structure of Anti-de Sitter geometries. These are non-globally hyperbolic space-times and the Cauchy problem may only be well defined if the initial data is supplemented by boundary conditions at the time-like conformal boundary. Here, we explore the active role that boundary conditions play in the evolution of a bulk black hole system, by imprisoning a black hole binary in a box with mirror-like boundary conditions. We are able to follow the post-merger dynamics for up to two reflections off the boundary of the gravitational radiation produced in the merger. We estimate that about 15% of the radiation energy is absorbed by the black hole per interaction, whereas transfer of angular momentum from the radiation to the black hole is only observed in the first interaction. We discuss the possible role of superradiant scattering for this result. Unlike the studies with outgoing boundary conditions, both the Newman-Penrose scalars Psi_4 and Psi_0 are non-trivial in our setup, and we show that the numerical data verifies the expected relations between them.
We consider a generic first-order phase transition at finite temperature and investigate to what extent a population of primordial black holes, of variable masses, can affect the rate of bubble nucleation. Using a thin-wall approximation, we construct the Euclidean configurations that describe transition at finite temperature. After the transition, the remnant black hole mass is dictated dynamically by the equations of motion. The transition exponent is computed and displays an explicit dependence on temperature. We find the configuration with the lowest Euclidean action to be static and $O(3)$ symmetric; therefore, the transition takes place via thermal excitation. The transition exponent exhibits a strong dependence on the seed mass black hole, $M_+$, being almost directly proportional. A new nucleation condition in the presence of black holes is derived and the nucleation temperature is compared to the familiar flat-space result, i.e. $S_3/T$. For an electroweak-like phase transition it is possible to enhance the nucleation rate if $M_+ lesssim 10^{15} M_{rm P}$. Finally, we outline the possible transition scenarios and the consequences for the power spectrum of stochastic gravitational waves produced due to the first-order phase transition.
This thesis is divided in two parts, each one addressing problems that can be relevant in the study of compact objects. The first part deals with the study of a magnetized and self-gravitating gas of degenerated fermions (electrons and neutrons) as sources of a Bianchi-I space-time. We solve numerically the Einstein-Maxwell field equations for a large set of initial conditions of the dynamical variables. The collapsing singularity is isotropic for the neutron gas and can be anisotropic for the electron gas. This result is consistent with the fact that electrons exhibit a stronger coupling with the magnetic field, which is the source of anisotropy in the dynamical variables. In the second part we calculate the entropy of extremal black holes in 4 and 5 dimensions, using the entropy function formalism of Sen and taking into account higher order derivative terms that come from the complete set of Riemann invariants. The resulting entropies show the deviations from the well know Bekenstein-Hawking area law.