No Arabic abstract
The world is currently witnessing dangerous shifts in the epidemic of emerging SARS-CoV-2, the causative agent of (COVID-19) coronavirus. The infection, and death numbers reported by World Health Organization (WHO) about this epidemic forecasts an increasing threats to the lives of people and the economics of countries. The greatest challenge that most governments are currently suffering from is the lack of a precise mechanism to detect unknown infected cases and predict the infection risk of COVID-19 virus. In response to mitigate this challenge, this study proposes a novel innovative approach for mitigating big challenges of (COVID-19) coronavirus propagation and contagion. This study propose a blockchain-based framework which investigate the possibility of utilizing peer-to peer, time stamping, and decentralized storage advantages of blockchain to build a new system for verifying and detecting the unknown infected cases of COVID-19 virus. Moreover, the proposed framework will enable the citizens to predict the infection risk of COVID-19 virus within conglomerates of people or within public places through a novel design of P2P-Mobile Application. The proposed approach is forecasted to produce an effective system able to support governments, health authorities, and citizens to take critical decision regarding the infection detection, infection prediction, and infection avoidance. The framework is currently being developed and implemented as a new system consists of four components, Infection Verifier Subsystem, Blockchain platform, P2P-Mobile Application, and Mass-Surveillance System. This four components work together for detecting the unknown infected cases and predicting and estimating the infection Risk of Corona Virus (COVID-19).
COVID-19 causes a global epidemic infection, which is the most severe infection disaster in human history. In the absence of particular medication and vaccines, tracing and isolating the source of infection is the best option to slow the spread of the virus and reduce infection and death rates among the population. There are three main obstacles in the process of tracing the infection: 1) Patients electronic health record is stored in a traditional centralized database that could be stolen and tampered with the infection data, 2) The confidential personal identity of the infected user may be revealed to a third party or organization, 3) Existing infection tracing systems do not trace infections from multiple dimensions. Either the system is location-based or individual-based tracing. In this work, we propose a global COVID-19 information sharing system that utilizes the Blockchain, Smart Contract, and Bluetooth technologies. The proposed system unifies location-based and Bluetooth-based contact tracing services into the Blockchain platform, where the automatically executed smart contracts are deployed so that users can get consistent and non-tamperable virus trails. The anonymous functionality provided by the Blockchain and Bluetooth technology protects the users identity privacy. With our proposed analysis formula for estimating the probability of infection, users can take measures to protect themselves in advance. We also implement a prototype system to demonstrate the feasibility and effectiveness of our approach.
We have witnessed an unprecedented public health crisis caused by the new coronavirus disease (COVID-19), which has severely affected medical institutions, our common lives, and social-economic activities. This crisis also reveals the brittleness of existing medical services, such as over-centralization of medical resources, the hysteresis of medical services digitalization, and weak security and privacy protection of medical data. The integration of the Internet of Medical Things (IoMT) and blockchain is expected to be a panacea to COVID-19 attributed to the ubiquitous presence and the perception of IoMT as well as the enhanced security and immutability of the blockchain. However, the synergy of IoMT and blockchain is also faced with challenges in privacy, latency, and context-absence. The emerging edge intelligence technologies bring opportunities to tackle these issues. In this article, we present a blockchain-empowered edge intelligence for IoMT in addressing the COVID-19 crisis. We first review IoMT, edge intelligence, and blockchain in addressing the COVID-19 pandemic. We then present an architecture of blockchain-empowered edge intelligence for IoMT after discussing the opportunities of integrating blockchain and edge intelligence. We next offer solutions to COVID-19 brought by blockchain-empowered edge intelligence from 1) monitoring and tracing COVID-19 pandemic origin, 2) traceable supply chain of injectable medicines and COVID-19 vaccines, and 3) telemedicine and remote healthcare services. Moreover, we also discuss the challenges and open issues in blockchain-empowered edge intelligence.
The current situation of COVID-19 demands novel solutions to boost healthcare services and economic growth. A full-fledged solution that can help the government and people retain their normal lifestyle and improve the economy is crucial. By bringing into the picture a unique incentive-based approach, the strain of government and the people can be greatly reduced. By providing incentives for actions such as voluntary testing, isolation, etc., the government can better plan strategies for fighting the situation while people in need can benefit from the incentive offered. This idea of combining strength to battle against the virus can bring out newer possibilities that can give an upper hand in this war. As the unpredictable future develops, sharing and maintaining COVID related data of every user could be the needed trigger to kick start the economy and blockchain paves the way for this solution with decentralization and immutability of data.
Recently, as a consequence of the COVID-19 pandemic, dependence on Contact Tracing (CT) models has significantly increased to prevent spread of this highly contagious virus and be prepared for the potential future ones. Since the spreading probability of the novel coronavirus in indoor environments is much higher than that of the outdoors, there is an urgent and unmet quest to develop/design efficient, autonomous, trustworthy, and secure indoor CT solutions. Despite such an urgency, this field is still in its infancy. The paper addresses this gap and proposes the Trustworthy Blockchain-enabled system for Indoor Contact Tracing (TB-ICT) framework. The TB-ICT framework is proposed to protect privacy and integrity of the underlying CT data from unauthorized access. More specifically, it is a fully distributed and innovative blockchain platform exploiting the proposed dynamic Proof of Work (dPoW) credit-based consensus algorithm coupled with Randomized Hash Window (W-Hash) and dynamic Proof of Credit (dPoC) mechanisms to differentiate between honest and dishonest nodes. The TB-ICT not only provides a decentralization in data replication but also quantifies the nodes behavior based on its underlying credit-based mechanism. For achieving high localization performance, we capitalize on availability of Internet of Things (IoT) indoor localization infrastructures, and develop a data driven localization model based on Bluetooth Low Energy (BLE) sensor measurements. The simulation results show that the proposed TB-ICT prevents the COVID-19 from spreading by implementation of a highly accurate contact tracing model while improving the users privacy and security.
The beginning of 2020 has seen the emergence of coronavirus outbreak caused by a novel virus called SARS-CoV-2. The sudden explosion and uncontrolled worldwide spread of COVID-19 show the limitations of existing healthcare systems in timely handling public health emergencies. In such contexts, innovative technologies such as blockchain and Artificial Intelligence (AI) have emerged as promising solutions for fighting coronavirus epidemic. In particular, blockchain can combat pandemics by enabling early detection of outbreaks, ensuring the ordering of medical data, and ensuring reliable medical supply chain during the outbreak tracing. Moreover, AI provides intelligent solutions for identifying symptoms caused by coronavirus for treatments and supporting drug manufacturing. Therefore, we present an extensive survey on the use of blockchain and AI for combating COVID-19 epidemics. First, we introduce a new conceptual architecture which integrates blockchain and AI for fighting COVID-19. Then, we survey the latest research efforts on the use of blockchain and AI for fighting COVID-19 in various applications. The newly emerging projects and use cases enabled by these technologies to deal with coronavirus pandemic are also presented. A case study is also provided using federated AI for COVID-19 detection. Finally, we point out challenges and future directions that motivate more research efforts to deal with future coronavirus-like epidemics.