Do you want to publish a course? Click here

Validated two-dimensional modeling of short carbon arcs: anode and cathode spots

373   0   0.0 ( 0 )
 Added by Jian Chen
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In order to study properties of short carbon arcs, a self-consistent model was implemented into a CFD code ANSYS-CFX. The model treats transport of heat and electric current in the plasma and the electrodes in a coupled manner and accounts for gas convection in the chamber. Multiple surface processes at the electrodes are modeled, including the formation of space-charge limited sheaths, ablation and deposition of carbon, emission and absorption of radiation and electrons. The simulations show that the arc is constricted near the cathode and the anode front surfaces leading to the formation of electrode spots. The cathode spot is a well-known phenomenon and mechanisms of its formation were reported elsewhere. However, the anode spot formation mechanism discovered in this work was not reported before. We conclude that the spot formation is not related to plasma instability, as commonly believed in case of constricted discharge columns, but rather occurs due to the highly nonlinear nature of heat balance in the anode. We additionally demonstrate this property with a reduced anode heat transfer model. We also show that the spot size increases with the arc current. This anode spot behavior was also confirmed in our experiments. Due to the anode spot formation, a large gradient of carbon gas density occurs near the anode, which drives a portion of the ablated carbon back to the anode at its periphery. This can consequently reduce the total ablation rate. Simulation results also show that the arc can reach local chemical equilibrium (LCE) state in the column region while the local thermal equilibrium (LTE) state is not typically achieved for experimental conditions. It shows that it is important to account for different electron and gas temperatures in the modeling of short carbon arcs.



rate research

Read More

Self-organized patterns of cathode spots in glow discharges are computed in the cathode boundary layer geometry, which is the one employed in most of the experiments reported in the literature. The model comprises conservation and transport equations of electrons and a single ion species, written in the drift-diffusion and local-field approximations, and Poissons equation. Multiple solutions existing for the same value of the discharge current and describing modes with different configurations of cathode spots are computed by means of a stationary solver. The computed solutions are compared to their counterparts for plane-parallel electrodes, and experiments. All of the computed spot patterns have been observed in the experiment.
We are developing a model of vacuum arcs. This model assumes that arcs develop as a result of mechanical failure of the surface due to Coulomb explosions, followed by ionization of fragments by field emission and the development of a small, dense plasma that interacts with the surface primarily through self sputtering and terminates as a unipolar arc capable of producing breakdown sites with high enhancement factors. We have attempted to produce a self consistent picture of triggering, arc evolution and surface damage. We are modeling these mechanisms using Molecular Dynamics (mechanical failure, Coulomb explosions, self sputtering), Particle-In-Cell (PIC) codes (plasma evolution), mesoscale surface thermodynamics (surface evolution), and finite element electrostatic modeling (field enhancements). We can present a variety of numerical results. We identify where our model differs from other descriptions of this phenomenon.
Transpolar arcs and cusp spots are both auroral phenomena which occur when the interplanetary magnetic field is northward. Transpolar arcs are associated with magnetic reconnection in the magnetotail, which closes magnetic flux and results in a wedge of closed flux which remains trapped, embedded in the magnetotail lobe. The cusp spot is an indicator of lobe reconnection at the high-latitude magnetopause; in its simplest case, lobe reconnection redistributes open flux without resulting in any net change in the open flux content of the magnetosphere. We present observations of the two phenomena interacting--i.e., a transpolar arc intersecting a cusp spot during part of its lifetime. The significance of this observation is that lobe reconnection can have the effect of opening closed magnetotail flux. We argue that such events should not be rare.
Hydrogen peroxide (H2O2) formation rates in a proton exchange membrane (PEM) fuel cell anode and cathode were estimated as a function of humidity and temperature by studying the oxygen reduction reaction (ORR) on a rotating ring disc electrode (RRDE). Fuel cell conditions were replicated by depositing a film of Pt/Vulcan XC-72 catalyst onto the disk and by varying the temperature, dissolved O2 concentration and the acidity levels in hydrochloric acid (HClO4). The HClO4 acidity was correlated to ionomer water activity and hence fuel cell humidity. The H2O2 formation rates showed a linear dependence on oxygen concentration and square dependence on water activity. The H2O2 selectivity in ORR was independent of oxygen concentration but increased with decrease in water activity (i.e., decreased humidity). Potential dependent activation energy for the H2O2 formation reaction was estimated from data obtained at different temperatures.
This paper describes how to light several microdischarges in parallel without having to individually ballast each one. The V-I curve of a microhollow cathode discharge is characterized by a constant voltage in the normal glow regime because the plasma is able to spread over the cathode surface area to provide the additional secondary electrons needed. If one limits the cathode surface area, the V-I characteristic can be forced into an abnormal glow regime in which the operating voltage must increase with the current. It is then possible to light several microdischarges mounted in parallel without ballasting them individually.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا