Do you want to publish a course? Click here

Unsupervised Facial Action Unit Intensity Estimation via Differentiable Optimization

116   0   0.0 ( 0 )
 Added by Tianyang Shi
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The automatic intensity estimation of facial action units (AUs) from a single image plays a vital role in facial analysis systems. One big challenge for data-driven AU intensity estimation is the lack of sufficient AU label data. Due to the fact that AU annotation requires strong domain expertise, it is expensive to construct an extensive database to learn deep models. The limited number of labeled AUs as well as identity differences and pose variations further increases the estimation difficulties. Considering all these difficulties, we propose an unsupervised framework GE-Net for facial AU intensity estimation from a single image, without requiring any annotated AU data. Our framework performs differentiable optimization, which iteratively updates the facial parameters (i.e., head pose, AU parameters and identity parameters) to match the input image. GE-Net consists of two modules: a generator and a feature extractor. The generator learns to render a face image from a set of facial parameters in a differentiable way, and the feature extractor extracts deep features for measuring the similarity of the rendered image and input real image. After the two modules are trained and fixed, the framework searches optimal facial parameters by minimizing the differences of the extracted features between the rendered image and the input image. Experimental results demonstrate that our method can achieve state-of-the-art results compared with existing methods.



rate research

Read More

Facial action unit (AU) intensity is an index to describe all visually discernible facial movements. Most existing methods learn intensity estimator with limited AU data, while they lack generalization ability out of the dataset. In this paper, we present a framework to predict the facial parameters (including identity parameters and AU parameters) based on a bone-driven face model (BDFM) under different views. The proposed framework consists of a feature extractor, a generator, and a facial parameter regressor. The regressor can fit the physical meaning parameters of the BDFM from a single face image with the help of the generator, which maps the facial parameters to the game-face images as a differentiable renderer. Besides, identity loss, loopback loss, and adversarial loss can improve the regressive results. Quantitative evaluations are performed on two public databases BP4D and DISFA, which demonstrates that the proposed method can achieve comparable or better performance than the state-of-the-art methods. Whats more, the qualitative results also demonstrate the validity of our method in the wild.
Facial action unit (AU) detection in the wild is a challenging problem, due to the unconstrained variability in facial appearances and the lack of accurate annotations. Most existing methods depend on either impractical labor-intensive labeling or inaccurate pseudo labels. In this paper, we propose an end-to-end unconstrained facial AU detection framework based on domain adaptation, which transfers accurate AU labels from a constrained source domain to an unconstrained target domain by exploiting labels of AU-related facial landmarks. Specifically, we map a source image with label and a target image without label into a latent feature domain by combining source landmark-related feature with target landmark-free feature. Due to the combination of source AU-related information and target AU-free information, the latent feature domain with transferred source label can be learned by maximizing the target-domain AU detection performance. Moreover, we introduce a novel landmark adversarial loss to disentangle the landmark-free feature from the landmark-related feature by treating the adversarial learning as a multi-player minimax game. Our framework can also be naturally extended for use with target-domain pseudo AU labels. Extensive experiments show that our method soundly outperforms lower-bounds and upper-bounds of the basic model, as well as state-of-the-art approaches on the challenging in-the-wild benchmarks. The code is available at https://github.com/ZhiwenShao/ADLD.
The detection of facial action units (AUs) has been studied as it has the competition due to the wide-ranging applications thereof. In this paper, we propose a novel framework for the AU detection from a single input image by grasping the textbf{c}o-textbf{o}ccurrence and textbf{m}utual textbf{ex}clusion (COMEX) as well as the intensity distribution among AUs. Our algorithm uses facial landmarks to detect the features of local AUs. The features are input to a bidirectional long short-term memory (BiLSTM) layer for learning the intensity distribution. Afterwards, the new AU feature continuously passed through a self-attention encoding layer and a continuous-state modern Hopfield layer for learning the COMEX relationships. Our experiments on the challenging BP4D and DISFA benchmarks without any external data or pre-trained models yield F1-scores of 63.7% and 61.8% respectively, which shows our proposed networks can lead to performance improvement in the AU detection task.
Action Units (AUs) are geometrically-based atomic facial muscle movements known to produce appearance changes at specific facial locations. Motivated by this observation we propose a novel AU modelling problem that consists of jointly estimating their localisation and intensity. To this end, we propose a simple yet efficient approach based on Heatmap Regression that merges both problems into a single task. A Heatmap models whether an AU occurs or not at a given spatial location. To accommodate the joint modelling of AUs intensity, we propose variable size heatmaps, with their amplitude and size varying according to the labelled intensity. Using Heatmap Regression, we can inherit from the progress recently witnessed in facial landmark localisation. Building upon the similarities between both problems, we devise a transfer learning approach where we exploit the knowledge of a network trained on large-scale facial landmark datasets. In particular, we explore different alternatives for transfer learning through a) fine-tuning, b) adaptation layers, c) attention maps, and d) reparametrisation. Our approach effectively inherits the rich facial features produced by a strong face alignment network, with minimal extra computational cost. We empirically validate that our system sets a new state-of-the-art on three popular datasets, namely BP4D, DISFA, and FERA2017.
Automatic facial action unit (AU) recognition has attracted great attention but still remains a challenging task, as subtle changes of local facial muscles are difficult to thoroughly capture. Most existing AU recognition approaches leverage geometry information in a straightforward 2D or 3D manner, which either ignore 3D manifold information or suffer from high computational costs. In this paper, we propose a novel geodesic guided convolution (GeoConv) for AU recognition by embedding 3D manifold information into 2D convolutions. Specifically, the kernel of GeoConv is weighted by our introduced geodesic weights, which are negatively correlated to geodesic distances on a coarsely reconstructed 3D face model. Moreover, based on GeoConv, we further develop an end-to-end trainable framework named GeoCNN for AU recognition. Extensive experiments on BP4D and DISFA benchmarks show that our approach significantly outperforms the state-of-the-art AU recognition methods.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا