Do you want to publish a course? Click here

GeoConv: Geodesic Guided Convolution for Facial Action Unit Recognition

190   0   0.0 ( 0 )
 Added by Yuedong Chen
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Automatic facial action unit (AU) recognition has attracted great attention but still remains a challenging task, as subtle changes of local facial muscles are difficult to thoroughly capture. Most existing AU recognition approaches leverage geometry information in a straightforward 2D or 3D manner, which either ignore 3D manifold information or suffer from high computational costs. In this paper, we propose a novel geodesic guided convolution (GeoConv) for AU recognition by embedding 3D manifold information into 2D convolutions. Specifically, the kernel of GeoConv is weighted by our introduced geodesic weights, which are negatively correlated to geodesic distances on a coarsely reconstructed 3D face model. Moreover, based on GeoConv, we further develop an end-to-end trainable framework named GeoCNN for AU recognition. Extensive experiments on BP4D and DISFA benchmarks show that our approach significantly outperforms the state-of-the-art AU recognition methods.



rate research

Read More

Facial expressions are combinations of basic components called Action Units (AU). Recognizing AUs is key for developing general facial expression analysis. In recent years, most efforts in automatic AU recognition have been dedicated to learning combinations of local features and to exploiting correlations between Action Units. In this paper, we propose a deep neural architecture that tackles both problems by combining learned local and global features in its initial stages and replicating a message passing algorithm between classes similar to a graphical model inference approach in later stages. We show that by training the model end-to-end with increased supervision we improve state-of-the-art by 5.3% and 8.2% performance on BP4D and DISFA datasets, respectively.
Current works formulate facial action unit (AU) recognition as a supervised learning problem, requiring fully AU-labeled facial images during training. It is challenging if not impossible to provide AU annotations for large numbers of facial images. Fortunately, AUs appear on all facial images, whether manually labeled or not, satisfy the underlying anatomic mechanisms and human behavioral habits. In this paper, we propose a deep semi-supervised framework for facial action unit recognition from partially AU-labeled facial images. Specifically, the proposed deep semi-supervised AU recognition approach consists of a deep recognition network and a discriminator D. The deep recognition network R learns facial representations from large-scale facial images and AU classifiers from limited ground truth AU labels. The discriminator D is introduced to enforce statistical similarity between the AU distribution inherent in ground truth AU labels and the distribution of the predicted AU labels from labeled and unlabeled facial images. The deep recognition network aims to minimize recognition loss from the labeled facial images, to faithfully represent inherent AU distribution for both labeled and unlabeled facial images, and to confuse the discriminator. During training, the deep recognition network R and the discriminator D are optimized alternately. Thus, the inherent AU distributions caused by underlying anatomic mechanisms are leveraged to construct better feature representations and AU classifiers from partially AU-labeled data during training. Experiments on two benchmark databases demonstrate that the proposed approach successfully captures AU distributions through adversarial learning and outperforms state-of-the-art AU recognition work.
Automatic facial action unit (AU) recognition is a challenging task due to the scarcity of manual annotations. To alleviate this problem, a large amount of efforts has been dedicated to exploiting various methods which leverage numerous unlabeled data. However, many aspects with regard to some unique properties of AUs, such as the regional and relational characteristics, are not sufficiently explored in previous works. Motivated by this, we take the AU properties into consideration and propose two auxiliary AU related tasks to bridge the gap between limited annotations and the model performance in a self-supervised manner via the unlabeled data. Specifically, to enhance the discrimination of regional features with AU relation embedding, we design a task of RoI inpainting to recover the randomly cropped AU patches. Meanwhile, a single image based optical flow estimation task is proposed to leverage the dynamic change of facial muscles and encode the motion information into the global feature representation. Based on these two self-supervised auxiliary tasks, local features, mutual relation and motion cues of AUs are better captured in the backbone network with the proposed regional and temporal based auxiliary task learning (RTATL) framework. Extensive experiments on BP4D and DISFA demonstrate the superiority of our method and new state-of-the-art performances are achieved.
Facial action unit recognition has many applications from market research to psychotherapy and from image captioning to entertainment. Despite its recent progress, deployment of these models has been impeded due to their limited generalization to unseen people and demographics. This work conducts an in-depth analysis of performance across several dimensions: individuals(40 subjects), genders (male and female), skin types (darker and lighter), and databases (BP4D and DISFA). To help suppress the variance in data, we use the notion of self-supervised denoising autoencoders to design a method for deep face normalization(DeepFN) that transfers facial expressions of different people onto a common facial template which is then used to train and evaluate facial action recognition models. We show that person-independent models yield significantly lower performance (55% average F1 and accuracy across 40 subjects) than person-dependent models (60.3%), leading to a generalization gap of 5.3%. However, normalizing the data with the newly introduced DeepFN significantly increased the performance of person-independent models (59.6%), effectively reducing the gap. Similarly, we observed generalization gaps when considering gender (2.4%), skin type (5.3%), and dataset (9.4%), which were significantly reduced with the use of DeepFN. These findings represent an important step towards the creation of more generalizable facial action unit recognition systems.
In facial action unit (AU) recognition tasks, regional feature learning and AU relation modeling are two effective aspects which are worth exploring. However, the limited representation capacity of regional features makes it difficult for relation models to embed AU relationship knowledge. In this paper, we propose a novel multi-level adaptive ROI and graph learning (MARGL) framework to tackle this problem. Specifically, an adaptive ROI learning module is designed to automatically adjust the location and size of the predefined AU regions. Meanwhile, besides relationship between AUs, there exists strong relevance between regional features across multiple levels of the backbone network as level-wise features focus on different aspects of representation. In order to incorporate the intra-level AU relation and inter-level AU regional relevance simultaneously, a multi-level AU relation graph is constructed and graph convolution is performed to further enhance AU regional features of each level. Experiments on BP4D and DISFA demonstrate the proposed MARGL significantly outperforms the previous state-of-the-art methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا