Do you want to publish a course? Click here

Image Co-skeletonization via Co-segmentation

122   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Recent advances in the joint processing of images have certainly shown its advantages over individual processing. Different from the existing works geared towards co-segmentation or co-localization, in this paper, we explore a new joint processing topic: image co-skeletonization, which is defined as joint skeleton extraction of objects in an image collection. Object skeletonization in a single natural image is a challenging problem because there is hardly any prior knowledge about the object. Therefore, we resort to the idea of object co-skeletonization, hoping that the commonness prior that exists across the images may help, just as it does for other joint processing problems such as co-segmentation. We observe that the skeleton can provide good scribbles for segmentation, and skeletonization, in turn, needs good segmentation. Therefore, we propose a coupled framework for co-skeletonization and co-segmentation tasks so that they are well informed by each other, and benefit each other synergistically. Since it is a new problem, we also construct a benchmark dataset by annotating nearly 1.8k images spread across 38 categories. Extensive experiments demonstrate that the proposed method achieves promising results in all the three possible scenarios of joint-processing: weakly-supervised, supervised, and unsupervised.



rate research

Read More

259 - Zhengwen Li , Xiabi Liu 2021
Deep Metric Learning (DML) is helpful in computer vision tasks. In this paper, we firstly introduce DML into image co-segmentation. We propose a novel Triplet loss for Image Segmentation, called IS-Triplet loss for short, and combine it with traditional image segmentation loss. Different from the general DML task which learns the metric between pictures, we treat each pixel as a sample, and use their embedded features in high-dimensional space to form triples, then we tend to force the distance between pixels of different categories greater than of the same category by optimizing IS-Triplet loss so that the pixels from different categories are easier to be distinguished in the high-dimensional feature space. We further present an efficient triple sampling strategy to make a feasible computation of IS-Triplet loss. Finally, the IS-Triplet loss is combined with 3 traditional image segmentation losses to perform image segmentation. We apply the proposed approach to image co-segmentation and test it on the SBCoseg dataset and the Internet dataset. The experimental result shows that our approach can effectively improve the discrimination of pixels categories in high-dimensional space and thus help traditional loss achieve better performance of image segmentation with fewer training epochs.
130 - Xiabi Liu , Xin Duan 2019
Image co-segmentation is important for its advantage of alleviating the ill-pose nature of image segmentation through exploring the correlation between related images. Many automatic image co-segmentation algorithms have been developed in the last decade, which are investigated comprehensively in this paper. We firstly analyze visual/semantic cues for guiding image co-segmentation, including object cues and correlation cues. Then we describe the traditional methods in three categories of object elements based, object regions/contours based, common object model based. In the next part, deep learning based methods are reviewed. Furthermore, widely used test datasets and evaluation criteria are introduced and the reported performances of the surveyed algorithms are compared with each other. Finally, we discuss the current challenges and possible future directions and conclude the paper. Hopefully, this comprehensive investigation will be helpful for the development of image co-segmentation technique.
Learning how objects sound from video is challenging, since they often heavily overlap in a single audio channel. Current methods for visually-guided audio source separation sidestep the issue by training with artificially mixed video clips, but this puts unwieldy restrictions on training data collection and may even prevent learning the properties of true mixed sounds. We introduce a co-separation training paradigm that permits learning object-level sounds from unlabeled multi-source videos. Our novel training objective requires that the deep neural networks separated audio for similar-looking objects be consistently identifiable, while simultaneously reproducing accurate video-level audio tracks for each source training pair. Our approach disentangles sounds in realistic test videos, even in cases where an object was not observed individually during training. We obtain state-of-the-art results on visually-guided audio source separation and audio denoising for the MUSIC, AudioSet, and AV-Bench datasets.
Recently, referring image segmentation has aroused widespread interest. Previous methods perform the multi-modal fusion between language and vision at the decoding side of the network. And, linguistic feature interacts with visual feature of each scale separately, which ignores the continuous guidance of language to multi-scale visual features. In this work, we propose an encoder fusion network (EFN), which transforms the visual encoder into a multi-modal feature learning network, and uses language to refine the multi-modal features progressively. Moreover, a co-attention mechanism is embedded in the EFN to realize the parallel update of multi-modal features, which can promote the consistent of the cross-modal information representation in the semantic space. Finally, we propose a boundary enhancement module (BEM) to make the network pay more attention to the fine structure. The experiment results on four benchmark datasets demonstrate that the proposed approach achieves the state-of-the-art performance under different evaluation metrics without any post-processing.
Co-segmentation is the automatic extraction of the common semantic regions given a set of images. Different from previous approaches mainly based on object visuals, in this paper, we propose a human centred object co-segmentation approach, which uses the human as another strong evidence. In order to discover the rich internal structure of the objects reflecting their human-object interactions and visual similarities, we propose an unsupervised fully connected CRF auto-encoder incorporating the rich object features and a novel human-object interaction representation. We propose an efficient learning and inference algorithm to allow the full connectivity of the CRF with the auto-encoder, that establishes pairwise relations on all pairs of the object proposals in the dataset. Moreover, the auto-encoder learns the parameters from the data itself rather than supervised learning or manually assigned parameters in the conventional CRF. In the extensive experiments on four datasets, we show that our approach is able to extract the common objects more accurately than the state-of-the-art co-segmentation algorithms.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا