Do you want to publish a course? Click here

From Quantized DNNs to Quantizable DNNs

232   0   0.0 ( 0 )
 Added by Kunyuan Du
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

This paper proposes Quantizable DNNs, a special type of DNNs that can flexibly quantize its bit-width (denoted as `bit modes thereafter) during execution without further re-training. To simultaneously optimize for all bit modes, a combinational loss of all bit modes is proposed, which enforces consistent predictions ranging from low-bit mode to 32-bit mode. This Consistency-based Loss may also be viewed as certain form of regularization during training. Because outputs of matrix multiplication in different bit modes have different distributions, we introduce Bit-Specific Batch Normalization so as to reduce conflicts among different bit modes. Experiments on CIFAR100 and ImageNet have shown that compared to quantized DNNs, Quantizable DNNs not only have much better flexibility, but also achieve even higher classification accuracy. Ablation studies further verify that the regularization through the consistency-based loss indeed improves the models generalization performance.



rate research

Read More

60 - Lei Huang , Li Liu , Fan Zhu 2020
Orthogonality is widely used for training deep neural networks (DNNs) due to its ability to maintain all singular values of the Jacobian close to 1 and reduce redundancy in representation. This paper proposes a computationally efficient and numerically stable orthogonalization method using Newtons iteration (ONI), to learn a layer-wise orthogonal weight matrix in DNNs. ONI works by iteratively stretching the singular values of a weight matrix towards 1. This property enables it to control the orthogonality of a weight matrix by its number of iterations. We show that our method improves the performance of image classification networks by effectively controlling the orthogonality to provide an optimal tradeoff between optimization benefits and representational capacity reduction. We also show that ONI stabilizes the training of generative adversarial networks (GANs) by maintaining the Lipschitz continuity of a network, similar to spectral normalization (SN), and further outperforms SN by providing controllable orthogonality.
Human can easily recognize visual objects with lost information: even losing most details with only contour reserved, e.g. cartoon. However, in terms of visual perception of Deep Neural Networks (DNNs), the ability for recognizing abstract objects (visual objects with lost information) is still a challenge. In this work, we investigate this issue from an adversarial viewpoint: will the performance of DNNs decrease even for the images only losing a little information? Towards this end, we propose a novel adversarial attack, named textit{AdvDrop}, which crafts adversarial examples by dropping existing information of images. Previously, most adversarial attacks add extra disturbing information on clean images explicitly. Opposite to previous works, our proposed work explores the adversarial robustness of DNN models in a novel perspective by dropping imperceptible details to craft adversarial examples. We demonstrate the effectiveness of textit{AdvDrop} by extensive experiments, and show that this new type of adversarial examples is more difficult to be defended by current defense systems.
347 - Qizhang Li , Yiwen Guo , Hao Chen 2020
The study of adversarial vulnerabilities of deep neural networks (DNNs) has progressed rapidly. Existing attacks require either internal access (to the architecture, parameters, or training set of the victim model) or external access (to query the model). However, both the access may be infeasible or expensive in many scenarios. We investigate no-box adversarial examples, where the attacker can neither access the model information or the training set nor query the model. Instead, the attacker can only gather a small number of examples from the same problem domain as that of the victim model. Such a stronger threat model greatly expands the applicability of adversarial attacks. We propose three mechanisms for training with a very small dataset (on the order of tens of examples) and find that prototypical reconstruction is the most effective. Our experiments show that adversarial examples crafted on prototypical auto-encoding models transfer well to a variety of image classification and face verification models. On a commercial celebrity recognition system held by clarifai.com, our approach significantly diminishes the average prediction accuracy of the system to only 15.40%, which is on par with the attack that transfers adversarial examples from a pre-trained Arcface model.
Reverberation is present in our workplaces, our homes, concert halls and theatres. This paper investigates how deep learning can use the effect of reverberation on speech to classify a recording in terms of the room in which it was recorded. Existing approaches in the literature rely on domain expertise to manually select acoustic parameters as inputs to classifiers. Estimation of these parameters from reverberant speech is adversely affected by estimation errors, impacting the classification accuracy. In order to overcome the limitations of previously proposed methods, this paper shows how DNNs can perform the classification by operating directly on reverberant speech spectra and a CRNN with an attention-mechanism is proposed for the task. The relationship is investigated between the reverberant speech representations learned by the DNNs and acoustic parameters. For evaluation, AIRs are used from the ACE-challenge dataset that were measured in 7 real rooms. The classification accuracy of the CRNN classifier in the experiments is 78% when using 5 hours of training data and 90% when using 10 hours.
We target the problem of detecting Trojans or backdoors in DNNs. Such models behave normally with typical inputs but produce specific incorrect predictions for inputs poisoned with a Trojan trigger. Our approach is based on a novel observation that the trigger behavior depends on a few ghost neurons that activate on trigger pattern and exhibit abnormally higher relative attribution for wrong decisions when activated. Further, these trigger neurons are also active on normal inputs of the target class. Thus, we use counterfactual attributions to localize these ghost neurons from clean inputs and then incrementally excite them to observe changes in the models accuracy. We use this information for Trojan detection by using a deep set encoder that enables invariance to the number of model classes, architecture, etc. Our approach is implemented in the TrinityAI tool that exploits the synergies between trustworthiness, resilience, and interpretability challenges in deep learning. We evaluate our approach on benchmarks with high diversity in model architectures, triggers, etc. We show consistent gains (+10%) over state-of-the-art methods that rely on the susceptibility of the DNN to specific adversarial attacks, which in turn requires strong assumptions on the nature of the Trojan attack.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا